Multidimensional Signals and Analytic Flexibility: Estimating Degrees of Freedom in Human-Speech Analyses

IF 15.6 1区 心理学 Q1 PSYCHOLOGY Advances in Methods and Practices in Psychological Science Pub Date : 2023-07-01 DOI:10.1177/25152459231162567
Stefano Coretta, Joseph V. Casillas, S. Roessig, M. Franke, Byron Ahn, Ali H. Al-Hoorie, Jalal Al-Tamimi, Najd E. Alotaibi, Mohammed AlShakhori, Ruth Altmiller, Pablo Arantes, Angeliki A. Athanasopoulou, M. Baese-Berk, George Bailey, Cheman Baira A Sangma, Eleonora J. Beier, Gabriela M. Benavides, Nicole Benker, Emelia P. BensonMeyer, Nina R. Benway, G. Berry, Liwen Bing, Christina Bjorndahl, Mariska A. Bolyanatz, A. Braver, V. Brown, Alicia M. Brown, A. Brugos, E. Buchanan, Tanna Butlin, Andrés Buxó-Lugo, Coline Caillol, F. Cangemi, C. Carignan, S. Carraturo, Tiphaine Caudrelier, Eleanor Chodroff, Michelle Cohn, Johanna Cronenberg, O. Crouzet, Erica L. Dagar, Charlotte Dawson, Carissa A. Diantoro, Marie Dokovova, Shiloh Drake, Fengting Du, Margaux Dubuis, Florent Duême, M. Durward, Ander Egurtzegi, M. Elsherif, J. Esser, Emmanuel Ferragne, F. Ferreira, Lauren K. Fink, Sara Finley, Kurtis Foster, P. Foulkes, Rosa Franzke, Gabriel Frazer-McKee, R. Fromont, Christina García, Jason Geller, Camille L Grasso, 
{"title":"Multidimensional Signals and Analytic Flexibility: Estimating Degrees of Freedom in Human-Speech Analyses","authors":"Stefano Coretta, Joseph V. Casillas, S. Roessig, M. Franke, Byron Ahn, Ali H. Al-Hoorie, Jalal Al-Tamimi, Najd E. Alotaibi, Mohammed AlShakhori, Ruth Altmiller, Pablo Arantes, Angeliki A. Athanasopoulou, M. Baese-Berk, George Bailey, Cheman Baira A Sangma, Eleonora J. Beier, Gabriela M. Benavides, Nicole Benker, Emelia P. BensonMeyer, Nina R. Benway, G. Berry, Liwen Bing, Christina Bjorndahl, Mariska A. Bolyanatz, A. Braver, V. Brown, Alicia M. Brown, A. Brugos, E. Buchanan, Tanna Butlin, Andrés Buxó-Lugo, Coline Caillol, F. Cangemi, C. Carignan, S. Carraturo, Tiphaine Caudrelier, Eleanor Chodroff, Michelle Cohn, Johanna Cronenberg, O. Crouzet, Erica L. Dagar, Charlotte Dawson, Carissa A. Diantoro, Marie Dokovova, Shiloh Drake, Fengting Du, Margaux Dubuis, Florent Duême, M. Durward, Ander Egurtzegi, M. Elsherif, J. Esser, Emmanuel Ferragne, F. Ferreira, Lauren K. Fink, Sara Finley, Kurtis Foster, P. Foulkes, Rosa Franzke, Gabriel Frazer-McKee, R. Fromont, Christina García, Jason Geller, Camille L Grasso, ","doi":"10.1177/25152459231162567","DOIUrl":null,"url":null,"abstract":"Recent empirical studies have highlighted the large degree of analytic flexibility in data analysis that can lead to substantially different conclusions based on the same data set. Thus, researchers have expressed their concerns that these researcher degrees of freedom might facilitate bias and can lead to claims that do not stand the test of time. Even greater flexibility is to be expected in fields in which the primary data lend themselves to a variety of possible operationalizations. The multidimensional, temporally extended nature of speech constitutes an ideal testing ground for assessing the variability in analytic approaches, which derives not only from aspects of statistical modeling but also from decisions regarding the quantification of the measured behavior. In this study, we gave the same speech-production data set to 46 teams of researchers and asked them to answer the same research question, resulting in substantial variability in reported effect sizes and their interpretation. Using Bayesian meta-analytic tools, we further found little to no evidence that the observed variability can be explained by analysts’ prior beliefs, expertise, or the perceived quality of their analyses. In light of this idiosyncratic variability, we recommend that researchers more transparently share details of their analysis, strengthen the link between theoretical construct and quantitative system, and calibrate their (un)certainty in their conclusions.","PeriodicalId":55645,"journal":{"name":"Advances in Methods and Practices in Psychological Science","volume":" ","pages":""},"PeriodicalIF":15.6000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Methods and Practices in Psychological Science","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/25152459231162567","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Recent empirical studies have highlighted the large degree of analytic flexibility in data analysis that can lead to substantially different conclusions based on the same data set. Thus, researchers have expressed their concerns that these researcher degrees of freedom might facilitate bias and can lead to claims that do not stand the test of time. Even greater flexibility is to be expected in fields in which the primary data lend themselves to a variety of possible operationalizations. The multidimensional, temporally extended nature of speech constitutes an ideal testing ground for assessing the variability in analytic approaches, which derives not only from aspects of statistical modeling but also from decisions regarding the quantification of the measured behavior. In this study, we gave the same speech-production data set to 46 teams of researchers and asked them to answer the same research question, resulting in substantial variability in reported effect sizes and their interpretation. Using Bayesian meta-analytic tools, we further found little to no evidence that the observed variability can be explained by analysts’ prior beliefs, expertise, or the perceived quality of their analyses. In light of this idiosyncratic variability, we recommend that researchers more transparently share details of their analysis, strengthen the link between theoretical construct and quantitative system, and calibrate their (un)certainty in their conclusions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多维信号和分析的灵活性:估计人类语音分析的自由度
最近的实证研究强调了数据分析中的很大程度的分析灵活性,这可能导致基于相同数据集的完全不同的结论。因此,研究人员表达了他们的担忧,即这些研究人员的自由度可能会助长偏见,并可能导致无法经受时间考验的主张。在主要数据适合各种可能的操作的领域,预期会有更大的灵活性。语音的多维性、时间延伸性构成了评估分析方法可变性的理想试验场,这不仅来自统计建模方面,还来自有关测量行为量化的决策。在这项研究中,我们向46个研究小组提供了相同的语音生成数据集,并要求他们回答相同的研究问题,导致报告的效应大小及其解释存在实质性差异。使用贝叶斯元分析工具,我们进一步发现几乎没有证据表明观察到的变异性可以用分析师的先验信念、专业知识或他们分析的感知质量来解释。鉴于这种特殊的可变性,我们建议研究人员更透明地分享他们的分析细节,加强理论构建与定量系统之间的联系,并校准他们结论的(不)确定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
21.20
自引率
0.70%
发文量
16
期刊介绍: In 2021, Advances in Methods and Practices in Psychological Science will undergo a transition to become an open access journal. This journal focuses on publishing innovative developments in research methods, practices, and conduct within the field of psychological science. It embraces a wide range of areas and topics and encourages the integration of methodological and analytical questions. The aim of AMPPS is to bring the latest methodological advances to researchers from various disciplines, even those who are not methodological experts. Therefore, the journal seeks submissions that are accessible to readers with different research interests and that represent the diverse research trends within the field of psychological science. The types of content that AMPPS welcomes include articles that communicate advancements in methods, practices, and metascience, as well as empirical scientific best practices. Additionally, tutorials, commentaries, and simulation studies on new techniques and research tools are encouraged. The journal also aims to publish papers that bring advances from specialized subfields to a broader audience. Lastly, AMPPS accepts Registered Replication Reports, which focus on replicating important findings from previously published studies. Overall, the transition of Advances in Methods and Practices in Psychological Science to an open access journal aims to increase accessibility and promote the dissemination of new developments in research methods and practices within the field of psychological science.
期刊最新文献
Bayesian Analysis of Cross-Sectional Networks: A Tutorial in R and JASP Conducting Research With People in Lower-Socioeconomic-Status Contexts Keeping Meta-Analyses Alive and Well: A Tutorial on Implementing and Using Community-Augmented Meta-Analyses in PsychOpen CAMA A Practical Guide to Conversation Research: How to Study What People Say to Each Other Impossible Hypotheses and Effect-Size Limits
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1