{"title":"A REVIEW OF POOL BOILING HEAT TRANSFER PROPERTIES BY NANOFLUID","authors":"M. S. A., A. Hassan","doi":"10.11113/jurnalteknologi.v85.18324","DOIUrl":null,"url":null,"abstract":"Boiling heat transfer has maintained a high degree of interest due to the range of its applications in the energy sector. In recent years, much research has focused on improving the nucleate pool boiling by modifying the fluid properties. In this review article, the basic properties and characteristics of Al2O3 nanofluids and few other nanofluids are explored and discussed through past research findings. Next, previous studies that involved pool boiling heat transfer enhancement using Al2O3 nanofluid and its performance in terms of critical heat flux (CHF) and heat transfer coefficient (HTC) are further highlighted. These studies have employed methods that affected the performance of CHF and HTC such as electric field and surface modification. Maximum enhancement in CHF measured is approximately 200%. On the other hand, usage of prediction models to predict enhancements are also discussed thoroughly. Regardless of boiling performance enhancements with the deployment of nanofluids, several concerns must first be addressed before it is able to be deployed for practical use.","PeriodicalId":47541,"journal":{"name":"Jurnal Teknologi-Sciences & Engineering","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Teknologi-Sciences & Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11113/jurnalteknologi.v85.18324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Boiling heat transfer has maintained a high degree of interest due to the range of its applications in the energy sector. In recent years, much research has focused on improving the nucleate pool boiling by modifying the fluid properties. In this review article, the basic properties and characteristics of Al2O3 nanofluids and few other nanofluids are explored and discussed through past research findings. Next, previous studies that involved pool boiling heat transfer enhancement using Al2O3 nanofluid and its performance in terms of critical heat flux (CHF) and heat transfer coefficient (HTC) are further highlighted. These studies have employed methods that affected the performance of CHF and HTC such as electric field and surface modification. Maximum enhancement in CHF measured is approximately 200%. On the other hand, usage of prediction models to predict enhancements are also discussed thoroughly. Regardless of boiling performance enhancements with the deployment of nanofluids, several concerns must first be addressed before it is able to be deployed for practical use.