{"title":"Application of Advanced Imaging Modalities in Veterinary Medicine: A Review","authors":"Dagmawi Yitbarek, Gashaw Getaneh Dagnaw","doi":"10.2147/VMRR.S367040","DOIUrl":null,"url":null,"abstract":"Abstract Veterinary anatomy has traditionally relied on detailed dissections to produce anatomical illustrations, but modern imaging modalities, now represent an enormous resource that allows for fast non-invasive visualizations in living animals for clinical and research purposes. In this review, advanced anatomical imaging modalities and their applications, safety issues, challenges, and future prospects of the techniques commonly employed for animal imaging would be highlighted. The quality of diagnostic imaging equipment in veterinary practice has greatly improved. Recent advances made in veterinary advanced imaging specifically about cross-sectional modalities (CT and MRI), nuclear medicine (PET, SPECT), and dual imaging modalities (PET/CT, PET/MR, and SPECT/CT) have become widely available, leading to greater demands and expectations from veterinary clients. These modalities allow for the creation of three-dimensional representations that can be of considerable value in the dissemination of clinical diagnosis and anatomical studies. Despite, the modern imaging modalities well established in developed countries across the globe, it is yet to remain in its infancy stage in veterinary practice in developing countries due to heavy initial investment and maintenance costs, lack of expert interpretation, a requirement of specialized technical staff and need of adjustable machines to accommodate the different range of animal sizes. Therefore, veterinarians should take advantage of these imaging techniques in designing future experiments by considering the availability of these varied imaging modalities and the creation of three-dimensional graphical representations of internal structures.","PeriodicalId":75300,"journal":{"name":"Veterinary medicine (Auckland, N.Z.)","volume":"13 1","pages":"117 - 130"},"PeriodicalIF":1.7000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Veterinary medicine (Auckland, N.Z.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2147/VMRR.S367040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
引用次数: 4
Abstract
Abstract Veterinary anatomy has traditionally relied on detailed dissections to produce anatomical illustrations, but modern imaging modalities, now represent an enormous resource that allows for fast non-invasive visualizations in living animals for clinical and research purposes. In this review, advanced anatomical imaging modalities and their applications, safety issues, challenges, and future prospects of the techniques commonly employed for animal imaging would be highlighted. The quality of diagnostic imaging equipment in veterinary practice has greatly improved. Recent advances made in veterinary advanced imaging specifically about cross-sectional modalities (CT and MRI), nuclear medicine (PET, SPECT), and dual imaging modalities (PET/CT, PET/MR, and SPECT/CT) have become widely available, leading to greater demands and expectations from veterinary clients. These modalities allow for the creation of three-dimensional representations that can be of considerable value in the dissemination of clinical diagnosis and anatomical studies. Despite, the modern imaging modalities well established in developed countries across the globe, it is yet to remain in its infancy stage in veterinary practice in developing countries due to heavy initial investment and maintenance costs, lack of expert interpretation, a requirement of specialized technical staff and need of adjustable machines to accommodate the different range of animal sizes. Therefore, veterinarians should take advantage of these imaging techniques in designing future experiments by considering the availability of these varied imaging modalities and the creation of three-dimensional graphical representations of internal structures.