{"title":"Effect of the Froude number on a stratified turbulence under two shear orientations using coupled SSG and SL models","authors":"L. Thamri, T. Naffouti","doi":"10.1080/14685248.2022.2053143","DOIUrl":null,"url":null,"abstract":"In the present investigation, the evolution of homogeneous and stratified turbulence under a horizontal and a vertical shear is deliberate by coupled second-order model SSG-SL. This model is a result of a combination between the Speziale, Sarkar and Gatski model (SSG) and the Shih and Lumley model (SL). Horizontal shear and vertical shear are related to the angle between the shear and the vertical gradient of stratification; θ = π/2 and θ = 0, respectively. This study is performed for different values of Froude number Fr ranging from 0.35–1.11. The SSG-SL model confirms the asymptotic equilibrium states for various physical parameters governing the problem (b12, b11, ε/KS, , K/E and Kρ/E) for two shear orientations (θ = π/2 and θ = 0). A comparison between findings using the present coupled model of SSG-SL and those by Direct Numerical Simulation of Jacobitz (DNSJ) [Jacobitz F, Sarkar S. A direct numerical study of transport and anisotropy in a stably stratified turbulent flow with uniform horizontal shear. Flow Turbul Combust. 2000;63:343–360.; Jacobitz F. A comparison of the turbulence evolution in a stratified fluid with vertical or horizontal shear. J Turbul. 2002;3:1–18.] is carried out. For the horizontal shear related to θ = π/2, an excellent agreement between predictions by the SSG-SL model and the results of DNSJ [Jacobitz, Sarkar;Jacobitz] is detected for turbulent thermal and dynamic fields.","PeriodicalId":49967,"journal":{"name":"Journal of Turbulence","volume":"23 1","pages":"214 - 231"},"PeriodicalIF":1.5000,"publicationDate":"2022-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Turbulence","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/14685248.2022.2053143","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
In the present investigation, the evolution of homogeneous and stratified turbulence under a horizontal and a vertical shear is deliberate by coupled second-order model SSG-SL. This model is a result of a combination between the Speziale, Sarkar and Gatski model (SSG) and the Shih and Lumley model (SL). Horizontal shear and vertical shear are related to the angle between the shear and the vertical gradient of stratification; θ = π/2 and θ = 0, respectively. This study is performed for different values of Froude number Fr ranging from 0.35–1.11. The SSG-SL model confirms the asymptotic equilibrium states for various physical parameters governing the problem (b12, b11, ε/KS, , K/E and Kρ/E) for two shear orientations (θ = π/2 and θ = 0). A comparison between findings using the present coupled model of SSG-SL and those by Direct Numerical Simulation of Jacobitz (DNSJ) [Jacobitz F, Sarkar S. A direct numerical study of transport and anisotropy in a stably stratified turbulent flow with uniform horizontal shear. Flow Turbul Combust. 2000;63:343–360.; Jacobitz F. A comparison of the turbulence evolution in a stratified fluid with vertical or horizontal shear. J Turbul. 2002;3:1–18.] is carried out. For the horizontal shear related to θ = π/2, an excellent agreement between predictions by the SSG-SL model and the results of DNSJ [Jacobitz, Sarkar;Jacobitz] is detected for turbulent thermal and dynamic fields.
期刊介绍:
Turbulence is a physical phenomenon occurring in most fluid flows, and is a major research topic at the cutting edge of science and technology. Journal of Turbulence ( JoT) is a digital forum for disseminating new theoretical, numerical and experimental knowledge aimed at understanding, predicting and controlling fluid turbulence.
JoT provides a common venue for communicating advances of fundamental and applied character across the many disciplines in which turbulence plays a vital role. Examples include turbulence arising in engineering fluid dynamics (aerodynamics and hydrodynamics, particulate and multi-phase flows, acoustics, hydraulics, combustion, aeroelasticity, transitional flows, turbo-machinery, heat transfer), geophysical fluid dynamics (environmental flows, oceanography, meteorology), in physics (magnetohydrodynamics and fusion, astrophysics, cryogenic and quantum fluids), and mathematics (turbulence from PDE’s, model systems). The multimedia capabilities offered by this electronic journal (including free colour images and video movies), provide a unique opportunity for disseminating turbulence research in visually impressive ways.