{"title":"Invariant Solutions and Conservation Laws of the Time-Fractional Telegraph Equation","authors":"R. Najafi, E. Çelik, Neslihan Uyanik","doi":"10.1155/2023/1294070","DOIUrl":null,"url":null,"abstract":"In this study, the Lie symmetry analysis is given for the time-fractional telegraph equation with the Riemann–Liouville derivative. This equation is useable to describe the physical processes of models possessing memory. By applying classical and nonclassical Lie symmetry analysis for the telegraph equation with \n \n α\n ,\n β\n \n time-fractional derivatives and some technical computations, new infinitesimal generators are obtained. The actual methods give some classical symmetries while the nonclassical approach will bring back other symmetries to these equations. The similarity reduction and conservation laws to the fractional telegraph equation are found.","PeriodicalId":49111,"journal":{"name":"Advances in Mathematical Physics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2023/1294070","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, the Lie symmetry analysis is given for the time-fractional telegraph equation with the Riemann–Liouville derivative. This equation is useable to describe the physical processes of models possessing memory. By applying classical and nonclassical Lie symmetry analysis for the telegraph equation with
α
,
β
time-fractional derivatives and some technical computations, new infinitesimal generators are obtained. The actual methods give some classical symmetries while the nonclassical approach will bring back other symmetries to these equations. The similarity reduction and conservation laws to the fractional telegraph equation are found.
期刊介绍:
Advances in Mathematical Physics publishes papers that seek to understand mathematical basis of physical phenomena, and solve problems in physics via mathematical approaches. The journal welcomes submissions from mathematical physicists, theoretical physicists, and mathematicians alike.
As well as original research, Advances in Mathematical Physics also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.