Copper(II) hydroxide/oxide-coated granular activated carbon for E. coli removal in water

IF 2.3 Q3 ENVIRONMENTAL SCIENCES Blue-Green Systems Pub Date : 2022-12-09 DOI:10.2166/bgs.2022.027
Yali Li, A. Deletic, R. Henry, Tong Zhang, D. Mccarthy
{"title":"Copper(II) hydroxide/oxide-coated granular activated carbon for E. coli removal in water","authors":"Yali Li, A. Deletic, R. Henry, Tong Zhang, D. Mccarthy","doi":"10.2166/bgs.2022.027","DOIUrl":null,"url":null,"abstract":"\n Low-cost granular filter media with hybrid bacterial adsorption and survival inhibition capability is highly desired for the development of a low-impact water filtration system. In addition to overall removal, a deeper understanding of the fate and transport behaviour of bacteria in such systems should also be obtained to guide system operation. In this study, copper(II) hydroxide nanoparticles-modified granular activated carbon via a single-step in situ coating was prepared and denoted as CuH-G. Copper release behaviour and Escherichia coli removal efficiency of CuH-G were studied in saturated columns as a function of salinity, flow rate, and hydraulic loading. Copper release decreased exponentially on increasing salinity in test water, which potentiates controlled copper release for desired bacteria inhibition efficiency. With an effective contact time of 3.7 min, CuH-G provided 3.0 and 1.6 log E. coli removal in test water of salinity 237 and 680 μS/cm, respectively. Copper leaching at these two salinities were 1.7 and 0.74 mg/l, respectively below the Australian Guidelines for Water Recycling: Augmentation of Drinking Water Supplies. Further study of E. coli transport and deposition behaviour in heat-treated CuH-G at 160 °C revealed that the observed removal was largely attributed to enhanced attachment during filtration and survival inhibition post filtration.","PeriodicalId":9337,"journal":{"name":"Blue-Green Systems","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Blue-Green Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/bgs.2022.027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 1

Abstract

Low-cost granular filter media with hybrid bacterial adsorption and survival inhibition capability is highly desired for the development of a low-impact water filtration system. In addition to overall removal, a deeper understanding of the fate and transport behaviour of bacteria in such systems should also be obtained to guide system operation. In this study, copper(II) hydroxide nanoparticles-modified granular activated carbon via a single-step in situ coating was prepared and denoted as CuH-G. Copper release behaviour and Escherichia coli removal efficiency of CuH-G were studied in saturated columns as a function of salinity, flow rate, and hydraulic loading. Copper release decreased exponentially on increasing salinity in test water, which potentiates controlled copper release for desired bacteria inhibition efficiency. With an effective contact time of 3.7 min, CuH-G provided 3.0 and 1.6 log E. coli removal in test water of salinity 237 and 680 μS/cm, respectively. Copper leaching at these two salinities were 1.7 and 0.74 mg/l, respectively below the Australian Guidelines for Water Recycling: Augmentation of Drinking Water Supplies. Further study of E. coli transport and deposition behaviour in heat-treated CuH-G at 160 °C revealed that the observed removal was largely attributed to enhanced attachment during filtration and survival inhibition post filtration.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
氢氧化铜/氧化物包覆颗粒活性炭去除水中大肠杆菌
具有混合细菌吸附和生存抑制能力的低成本颗粒过滤介质是开发低影响水过滤系统的迫切需要。除了整体去除外,还应更深入地了解此类系统中细菌的命运和运输行为,以指导系统的操作。本研究采用单步原位包覆法制备了氢氧化铜纳米颗粒修饰的颗粒活性炭,记作CuH-G。研究了饱和柱中CuH-G对铜的释放行为和对大肠杆菌的去除效率与盐度、流速和水力载荷的关系。铜的释放量随着试验水盐度的增加呈指数下降,这有助于控制铜的释放,以达到理想的抑菌效果。CuH-G的有效接触时间为3.7 min,对盐度为237 μS/cm和680 μS/cm的试验水的大肠杆菌去除率分别为3.0和1.6 log。这两种盐度下的铜浸出率分别为1.7和0.74毫克/升,低于澳大利亚水循环准则:增加饮用水供应。进一步研究大肠杆菌在160°C热处理的CuH-G中的运输和沉积行为表明,所观察到的去除主要归因于过滤过程中的附着增强和过滤后的存活抑制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Blue-Green Systems
Blue-Green Systems Multiple-
CiteScore
8.70
自引率
0.00%
发文量
0
期刊最新文献
An integrated framework for waterfront development to recognize nature-based solution (NBS) in urban areas: evaluating the condition of two projects in Bangladesh From shower to table: fate of organic micropollutants in hydroponic systems for greywater treatment and lettuce cultivation Modelling urban stormwater and irrigation management with coupled blue-green infrastructure in the context of climate change Life cycle assessment of ammonium sulfate recovery from urban wastewater Bio-safe drinking water with or without chlorine: a review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1