{"title":"A Bootstrap Variance Procedure for the Generalised Regression Estimator","authors":"Marius Stefan, Michael A. Hidiroglou","doi":"10.1111/insr.12528","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The generalised regression estimator (GREG) uses auxiliary data that are available from the finite population to improve the efficiency of the estimator of a total (mean). Estimators of the variance of GREG that have been proposed in the sampling literature include those based on Taylor linearisation and the jackknife techniques. Approximations based on Taylor expansions are reasonable for large samples. However, when the sample size is small, the Taylor-based variance estimator has a large negative bias. The jackknife variance estimators overestimate the variance of GREG for small sample sizes. We offset these setbacks using a bootstrap procedure for estimating the variance of the GREG. The method uses a bootstrap population constructed with the model underlying the GREG estimator. Repeated samples are selected in the bootstrap population according to the design used to select the initial sample, and the variability associated with these bootstrap samples is used to compute the proposed bootstrap variance estimator. Simulations show that the new bootstrap estimator has a small bias for samples that have few observations.</p>\n </div>","PeriodicalId":14479,"journal":{"name":"International Statistical Review","volume":"91 2","pages":"294-317"},"PeriodicalIF":1.7000,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Statistical Review","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/insr.12528","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
The generalised regression estimator (GREG) uses auxiliary data that are available from the finite population to improve the efficiency of the estimator of a total (mean). Estimators of the variance of GREG that have been proposed in the sampling literature include those based on Taylor linearisation and the jackknife techniques. Approximations based on Taylor expansions are reasonable for large samples. However, when the sample size is small, the Taylor-based variance estimator has a large negative bias. The jackknife variance estimators overestimate the variance of GREG for small sample sizes. We offset these setbacks using a bootstrap procedure for estimating the variance of the GREG. The method uses a bootstrap population constructed with the model underlying the GREG estimator. Repeated samples are selected in the bootstrap population according to the design used to select the initial sample, and the variability associated with these bootstrap samples is used to compute the proposed bootstrap variance estimator. Simulations show that the new bootstrap estimator has a small bias for samples that have few observations.
期刊介绍:
International Statistical Review is the flagship journal of the International Statistical Institute (ISI) and of its family of Associations. It publishes papers of broad and general interest in statistics and probability. The term Review is to be interpreted broadly. The types of papers that are suitable for publication include (but are not limited to) the following: reviews/surveys of significant developments in theory, methodology, statistical computing and graphics, statistical education, and application areas; tutorials on important topics; expository papers on emerging areas of research or application; papers describing new developments and/or challenges in relevant areas; papers addressing foundational issues; papers on the history of statistics and probability; white papers on topics of importance to the profession or society; and historical assessment of seminal papers in the field and their impact.