Consideration of climate change impacts will improve the efficiency of protected areas on the Qinghai-Tibet Plateau

IF 4.2 2区 环境科学与生态学 Q1 ECOLOGY Ecosystem Health and Sustainability Pub Date : 2022-08-24 DOI:10.1080/20964129.2022.2117089
Zijian Lu, Liang Wang, Nan Meng, Xuhuan Dai, Jingyi Zhu, Yan-zheng Yang, Ruonan Li, Jinfeng Ma, Hua Zheng
{"title":"Consideration of climate change impacts will improve the efficiency of protected areas on the Qinghai-Tibet Plateau","authors":"Zijian Lu, Liang Wang, Nan Meng, Xuhuan Dai, Jingyi Zhu, Yan-zheng Yang, Ruonan Li, Jinfeng Ma, Hua Zheng","doi":"10.1080/20964129.2022.2117089","DOIUrl":null,"url":null,"abstract":"ABSTRACT The protection of migratory birds and their habitats is important to the ecological stability of the Qinghai-Tibet Plateau (QTP). Currently protected areas (PAs) were designed in accordance with species distribution patterns under current climatic conditions, thus ignoring climate change will lead to a decrease in the protection efficiency of PAs. In this study, using the flagship species Grus nigricollis, as an example, we used the maximum entropy (MaxEnt) model to simulate the distributions and conservation status of G. nigricollis and optimized the existing PA boundaries . The results showed that (1) suitable habitat- for G. nigricollis accounts for 12.48% of the QTP area, and the PAs established under current climatic conditions cover 17.84% of this suitable habitat area; (2) future climate changes will influence the distribution and quality of G. nigricollis habitats, and the average protection efficiency of the current PAs in four climatic scenarios will decrease from 17.84% to 15.31%; and (3) through optimization, the efficiency of existing PAs can be increased by 0.75 times and reach 28.37%, indicating PA planning must consider not only current climate conditions but also the effects of climate changes. Our results aim to address shortcomings in the conservation efficiency of PAs and provide an example for resolving mismatched PA boundaries and habitat changes for species.","PeriodicalId":54216,"journal":{"name":"Ecosystem Health and Sustainability","volume":" ","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2022-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecosystem Health and Sustainability","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/20964129.2022.2117089","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT The protection of migratory birds and their habitats is important to the ecological stability of the Qinghai-Tibet Plateau (QTP). Currently protected areas (PAs) were designed in accordance with species distribution patterns under current climatic conditions, thus ignoring climate change will lead to a decrease in the protection efficiency of PAs. In this study, using the flagship species Grus nigricollis, as an example, we used the maximum entropy (MaxEnt) model to simulate the distributions and conservation status of G. nigricollis and optimized the existing PA boundaries . The results showed that (1) suitable habitat- for G. nigricollis accounts for 12.48% of the QTP area, and the PAs established under current climatic conditions cover 17.84% of this suitable habitat area; (2) future climate changes will influence the distribution and quality of G. nigricollis habitats, and the average protection efficiency of the current PAs in four climatic scenarios will decrease from 17.84% to 15.31%; and (3) through optimization, the efficiency of existing PAs can be increased by 0.75 times and reach 28.37%, indicating PA planning must consider not only current climate conditions but also the effects of climate changes. Our results aim to address shortcomings in the conservation efficiency of PAs and provide an example for resolving mismatched PA boundaries and habitat changes for species.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
考虑气候变化的影响将提高青藏高原保护区的效率
保护候鸟及其栖息地对青藏高原生态稳定具有重要意义。目前的保护区是根据当前气候条件下的物种分布格局来设计的,忽视气候变化会导致保护区的保护效率下降。本研究以代表性物种黑松(Grus nigricollis)为例,采用最大熵(MaxEnt)模型模拟黑松的分布和保护状况,并对现有PA边界进行优化。结果表明:(1)黑穗病菌适宜生境面积占QTP面积的12.48%,在当前气候条件下建立的保护区面积占该适宜生境面积的17.84%;(2)未来气候变化将影响黑线虫生境的分布和质量,4种气候情景下现有保护区的平均保护率将从17.84%下降到15.31%;(3)优化后现有保护区效率提高0.75倍,达到28.37%,表明保护区规划既要考虑当前气候条件,也要考虑气候变化的影响。本研究旨在弥补保护区保护效率的不足,并为解决保护区边界不匹配和物种栖息地变化问题提供范例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ecosystem Health and Sustainability
Ecosystem Health and Sustainability Environmental Science-Management, Monitoring, Policy and Law
CiteScore
7.10
自引率
2.00%
发文量
40
审稿时长
22 weeks
期刊介绍: Ecosystem Health and Sustainability publishes articles on advances in ecology and sustainability science, how global environmental change affects ecosystem health, how changes in human activities affect ecosystem conditions, and system-based approaches for applying ecological science in decision-making to promote sustainable development. Papers focus on applying ecological theory, principles, and concepts to support sustainable development, especially in regions undergoing rapid environmental change. Papers on multi-scale, integrative, and interdisciplinary studies, and on international collaborations between scientists from industrialized and industrializing countries are especially welcome. Suitable topics for EHS include: • Global, regional and local studies of international significance • Impact of global or regional environmental change on natural ecosystems • Interdisciplinary research involving integration of natural, social, and behavioral sciences • Science and policy that promote the use of ecological sciences in decision making • Novel or multidisciplinary approaches for solving complex ecological problems • Multi-scale and long-term observations of ecosystem evolution • Development of novel systems approaches or modeling and simulation techniques • Rapid responses to emerging ecological issues.
期刊最新文献
Thinning and managed burning enhance forest resilience in northeastern California Assessing forest ecosystem services in the Greater Khingan Mountains area using remote sensing Spatiotemporal variation in ecosystem health caused by land use and land cover change in Pakistan Integrating multiple diversity and socio-economic criteria in Tibetan felid conservation Regulation of precipitation on soil dissolved organic matter in perturbed mangrove ecosystems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1