Maziyar Bahrami, N. Talebbeydokhti, G. Rakhshandehroo, M. Nikoo, J. Adamowski
{"title":"A fusion-based data assimilation framework for runoff prediction considering multiple sources of precipitation","authors":"Maziyar Bahrami, N. Talebbeydokhti, G. Rakhshandehroo, M. Nikoo, J. Adamowski","doi":"10.1080/02626667.2023.2180375","DOIUrl":null,"url":null,"abstract":"ABSTRACT A fusion-based framework, in which a particle filter Markov chain Monte Carlo (PFMCMC) data assimilation method was coupled with the hydrological Sacramento Soil Moisture Accounting Model (SAC-SMA), was developed to improve the model’s capacity to predict one-day-ahead runoff. A case study was applied where mean daily precipitation from multiple sources served as forcing data in the data assimilation procedure, while ground station and multiple bias-corrected satellite-based precipitation datasets served as precipitation input datasets. The model training period used six years (2002–2007) of data to determine optimal weights through a genetic algorithm optimization model, while two years (2008–2009) were used to test the model. The proposed framework, applied to a real case study, improved SAC-SMA runoff prediction accuracy by incorporating precipitation datasets from multiple sources in the data assimilation procedure. On average, the PFMCMC-based data assimilation procedure led to a 13.7% improvement in SAC-SMA model performance metrics (NSE, MAB, RMSE, RMSRE, RMRE).","PeriodicalId":55042,"journal":{"name":"Hydrological Sciences Journal-Journal Des Sciences Hydrologiques","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2023-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrological Sciences Journal-Journal Des Sciences Hydrologiques","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/02626667.2023.2180375","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 1
Abstract
ABSTRACT A fusion-based framework, in which a particle filter Markov chain Monte Carlo (PFMCMC) data assimilation method was coupled with the hydrological Sacramento Soil Moisture Accounting Model (SAC-SMA), was developed to improve the model’s capacity to predict one-day-ahead runoff. A case study was applied where mean daily precipitation from multiple sources served as forcing data in the data assimilation procedure, while ground station and multiple bias-corrected satellite-based precipitation datasets served as precipitation input datasets. The model training period used six years (2002–2007) of data to determine optimal weights through a genetic algorithm optimization model, while two years (2008–2009) were used to test the model. The proposed framework, applied to a real case study, improved SAC-SMA runoff prediction accuracy by incorporating precipitation datasets from multiple sources in the data assimilation procedure. On average, the PFMCMC-based data assimilation procedure led to a 13.7% improvement in SAC-SMA model performance metrics (NSE, MAB, RMSE, RMSRE, RMRE).
期刊介绍:
Hydrological Sciences Journal is an international journal focused on hydrology and the relationship of water to atmospheric processes and climate.
Hydrological Sciences Journal is the official journal of the International Association of Hydrological Sciences (IAHS).
Hydrological Sciences Journal aims to provide a forum for original papers and for the exchange of information and views on significant developments in hydrology worldwide on subjects including:
Hydrological cycle and processes
Surface water
Groundwater
Water resource systems and management
Geographical factors
Earth and atmospheric processes
Hydrological extremes and their impact
Hydrological Sciences Journal offers a variety of formats for paper submission, including original articles, scientific notes, discussions, and rapid communications.