Convening Expert Taxonomists to Build Image Libraries for Training Automated Classifiers

Kasia M. Kenitz, Eric C. Orenstein, Clarissa R. Anderson, Alexander J. Barth, Christian Briseño-Avena, David A. Caron, Melissa L. Carter, Emily Eggleston, Peter J. S. Franks, James T. Fumo, Jules S. Jaffe, Kelsey A. McBeain, Anthony Odell, Kristi Seech, Rebecca Shipe, Jayme Smith, Darcy A. A. Taniguchi, Elizabeth L. Venrick, Andrew D. Barton
{"title":"Convening Expert Taxonomists to Build Image Libraries for Training Automated Classifiers","authors":"Kasia M. Kenitz,&nbsp;Eric C. Orenstein,&nbsp;Clarissa R. Anderson,&nbsp;Alexander J. Barth,&nbsp;Christian Briseño-Avena,&nbsp;David A. Caron,&nbsp;Melissa L. Carter,&nbsp;Emily Eggleston,&nbsp;Peter J. S. Franks,&nbsp;James T. Fumo,&nbsp;Jules S. Jaffe,&nbsp;Kelsey A. McBeain,&nbsp;Anthony Odell,&nbsp;Kristi Seech,&nbsp;Rebecca Shipe,&nbsp;Jayme Smith,&nbsp;Darcy A. A. Taniguchi,&nbsp;Elizabeth L. Venrick,&nbsp;Andrew D. Barton","doi":"10.1002/lob.10584","DOIUrl":null,"url":null,"abstract":"<p>Digital imaging technologies are increasingly used to study life in the ocean. To deal with the large volume of image data collected over space and time, scientists employ various machine learning and deep learning algorithms to perform automated image classification. Training of classifiers requires a large number of expertly curated sets of images, a time-consuming process that requires taxonomic knowledge and understanding of the local ecosystem. The creation of these labeled training sets is the critical bottleneck for building skillful automated classifiers. Here, we discuss how we overcame this barrier by leveraging taxonomic knowledge from a group of specialists in a workshop setting and suggest best practices for effectively organizing image annotation efforts. In our experience, this 2 day workshop proved very insightful and facilitated classification of over 4 years of plankton images obtained at Scripps Pier (La Jolla, CA), focusing on diatoms and dinoflagellates. We highlight the importance of facilitating a dialog between taxonomists and engineers to better integrate ecological goals with computational constraints, and encourage continuous involvement of taxonomic experts for successful implementation of automated classifiers.</p>","PeriodicalId":40008,"journal":{"name":"Limnology and Oceanography Bulletin","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/lob.10584","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Limnology and Oceanography Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/lob.10584","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Digital imaging technologies are increasingly used to study life in the ocean. To deal with the large volume of image data collected over space and time, scientists employ various machine learning and deep learning algorithms to perform automated image classification. Training of classifiers requires a large number of expertly curated sets of images, a time-consuming process that requires taxonomic knowledge and understanding of the local ecosystem. The creation of these labeled training sets is the critical bottleneck for building skillful automated classifiers. Here, we discuss how we overcame this barrier by leveraging taxonomic knowledge from a group of specialists in a workshop setting and suggest best practices for effectively organizing image annotation efforts. In our experience, this 2 day workshop proved very insightful and facilitated classification of over 4 years of plankton images obtained at Scripps Pier (La Jolla, CA), focusing on diatoms and dinoflagellates. We highlight the importance of facilitating a dialog between taxonomists and engineers to better integrate ecological goals with computational constraints, and encourage continuous involvement of taxonomic experts for successful implementation of automated classifiers.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
召集专家分类学家建立训练自动分类器的图像库
数字成像技术越来越多地被用于研究海洋中的生命。为了处理在空间和时间上收集的大量图像数据,科学家们使用各种机器学习和深度学习算法来执行自动图像分类。分类器的训练需要大量专业策划的图像集,这是一个耗时的过程,需要分类学知识和对当地生态系统的理解。创建这些标记的训练集是构建熟练的自动分类器的关键瓶颈。在这里,我们讨论了如何通过在研讨会上利用一组专家的分类学知识来克服这一障碍,并提出了有效组织图像注释工作的最佳实践。根据我们的经验,这个为期两天的研讨会非常有见地,有助于对超过4 在斯克里普斯码头(加利福尼亚州拉霍亚)获得的多年浮游生物图像,重点是硅藻和甲藻。我们强调了促进分类学家和工程师之间对话的重要性,以更好地将生态目标与计算约束相结合,并鼓励分类专家的持续参与,以成功实现自动分类器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Limnology and Oceanography Bulletin
Limnology and Oceanography Bulletin Environmental Science-Water Science and Technology
CiteScore
1.50
自引率
0.00%
发文量
60
期刊介绍: All past issues of the Limnology and Oceanography Bulletin are available online, including its predecessors Communications to Members and the ASLO Bulletin. Access to the current and previous volume is restricted to members and institutions with a subscription to the ASLO journals. All other issues are freely accessible without a subscription. As part of ASLO’s mission to disseminate and communicate knowledge in the aquatic sciences.
期刊最新文献
Limnology and Oceanography Bulletin Volume 33 Number 3 August 2024 1-44 Correction to “Filling the Gap: A Comprehensive Freshwater Network to Map Microplastics across Ecological Gradients in Argentina” Just Hit Submit—Perspectives and Advice From L&O Letters Early Career Publication Honor Awardees Visit Xiamen—For Fun and Science!: 2025 Xiamen Symposium on Marine Environmental Sciences ASLO 2024 Award Winners
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1