Implementasi Algoritma Naïve Bayes untuk Mendeteksi Resiko Tinggi Diabetes Melitus Pada Ibu Hamil (Studi Kasus : Puskesmas Kabupaten Malang)

Fatmawati Fatmawati, S. Wicaksono, S. Wijoyo
{"title":"Implementasi Algoritma Naïve Bayes untuk Mendeteksi Resiko Tinggi Diabetes Melitus Pada Ibu Hamil (Studi Kasus : Puskesmas Kabupaten Malang)","authors":"Fatmawati Fatmawati, S. Wicaksono, S. Wijoyo","doi":"10.25126/jtiik.20241046422","DOIUrl":null,"url":null,"abstract":"Diabetes pada ibu hamil dapat meningkatkan berbagai risiko, baik maternal maupun neonatus. Terdapat gangguan homeostasis glukosa pada ibu hamil. Terjadinya malformasi kongenital, keguguran, risiko preeklampsia, CPD (Cepalo Pelvik Dispropotion), kelahiran prematur, kelainan letak, plasenta previa dan hipoglikemia neonatus. Oleh karena itu, Perhatian dan penanganan menyeluruh bagi ibu hamil yang mengalami diabetes. Data mining dapat digunakan untuk deteksi resiko tinggi diabetus mellitus pada ibu hamil. Data yang digunakan seperti nama, usia, umur kehamilan, gravida, para, riwayat kehamilan yang lalu, riwayat penyakit yang pernah diderita, faktor risiko, riwayat persalinan yang lalu untuk deteksi resiko tinggi diabetus mellitus pada ibu hamil. Tidak semua kehamilan dapat berjalan dengan normal atau fisiologis pada saat proses persalinannya ada faktor risiko yang dapat mempengaruhinya. Pada penelitian ini dapat mendeteksi resiko yang akan terjadi kepada ibu hamil dan bayi dalam kandungannya. Nilai akurasi tertinggi terdapat pada pengujian ke 4 sebesar 82.4324% dan terendah nilai akurasi pada pengujian ke 2 sebesar 75%. Nilai presisi tertinggi terdapat di uji coba ke 3 sebesar 79.2% dan nilai presisi terendah di uji coba ke 2 sebesar 76.3%. Nilai recall tertinggi terdapat di uji coba ke 4 sebesar 82.4% dan nilai recall terendah di uji coba ke 2 sebesar 75%. Nilai F-Measure tertinggi terdapat di uji coba ke 3 sebesar 79.2% dan nilai F-Measure terendah di uji coba ke 2 sebesar 74.8%. AbstractDiabetes in pregnant women can increase various risks, both maternal and neonatal. There is a disturbance of glucose homeostasis in pregnant women. Occurrence of congenital malformations, miscarriage, risk of preeclampsia, CPD (Cepalo Pelvic Disproportion), premature birth, position abnormalities, placenta previa and neonatal hypoglycemia. Therefore, attention and comprehensive treatment for pregnant women with diabetes. Data mining can be used to detect high risk of diabetes mellitus in pregnant women. The data used are name, age, gestational age, gravida, para, past pregnancy history, history of previous illness, risk factors, past delivery history to detect high risk of diabetes mellitus in pregnant women. Not all pregnancies can run normally or physiologically at the time of delivery there are risk factors that can affect it. In this study, it can detect the risks that will occur to pregnant women and their babies in the womb. In addition, recommendations from the system can support a midwife's decision making in taking action to pregnant women. The highest accuracy value is found in the 4th test of 82,4324% and the lowest accuracy value in the 2nd test is 75%. The highest precision value was found in the 3rd trial of 79.2% and the lowest precision value in the 2nd trial of 76.3%. The highest recall value was found in the 4th trial of 82.4% and the lowest recall value in the 2nd trial of 75%. The highest F-Measure value was found in the 3rd trial of 79.2% and the lowest F-Measure value in the 2nd trial of 74.8%.","PeriodicalId":32501,"journal":{"name":"Jurnal Teknologi Informasi dan Ilmu Komputer","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Teknologi Informasi dan Ilmu Komputer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25126/jtiik.20241046422","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Diabetes pada ibu hamil dapat meningkatkan berbagai risiko, baik maternal maupun neonatus. Terdapat gangguan homeostasis glukosa pada ibu hamil. Terjadinya malformasi kongenital, keguguran, risiko preeklampsia, CPD (Cepalo Pelvik Dispropotion), kelahiran prematur, kelainan letak, plasenta previa dan hipoglikemia neonatus. Oleh karena itu, Perhatian dan penanganan menyeluruh bagi ibu hamil yang mengalami diabetes. Data mining dapat digunakan untuk deteksi resiko tinggi diabetus mellitus pada ibu hamil. Data yang digunakan seperti nama, usia, umur kehamilan, gravida, para, riwayat kehamilan yang lalu, riwayat penyakit yang pernah diderita, faktor risiko, riwayat persalinan yang lalu untuk deteksi resiko tinggi diabetus mellitus pada ibu hamil. Tidak semua kehamilan dapat berjalan dengan normal atau fisiologis pada saat proses persalinannya ada faktor risiko yang dapat mempengaruhinya. Pada penelitian ini dapat mendeteksi resiko yang akan terjadi kepada ibu hamil dan bayi dalam kandungannya. Nilai akurasi tertinggi terdapat pada pengujian ke 4 sebesar 82.4324% dan terendah nilai akurasi pada pengujian ke 2 sebesar 75%. Nilai presisi tertinggi terdapat di uji coba ke 3 sebesar 79.2% dan nilai presisi terendah di uji coba ke 2 sebesar 76.3%. Nilai recall tertinggi terdapat di uji coba ke 4 sebesar 82.4% dan nilai recall terendah di uji coba ke 2 sebesar 75%. Nilai F-Measure tertinggi terdapat di uji coba ke 3 sebesar 79.2% dan nilai F-Measure terendah di uji coba ke 2 sebesar 74.8%. AbstractDiabetes in pregnant women can increase various risks, both maternal and neonatal. There is a disturbance of glucose homeostasis in pregnant women. Occurrence of congenital malformations, miscarriage, risk of preeclampsia, CPD (Cepalo Pelvic Disproportion), premature birth, position abnormalities, placenta previa and neonatal hypoglycemia. Therefore, attention and comprehensive treatment for pregnant women with diabetes. Data mining can be used to detect high risk of diabetes mellitus in pregnant women. The data used are name, age, gestational age, gravida, para, past pregnancy history, history of previous illness, risk factors, past delivery history to detect high risk of diabetes mellitus in pregnant women. Not all pregnancies can run normally or physiologically at the time of delivery there are risk factors that can affect it. In this study, it can detect the risks that will occur to pregnant women and their babies in the womb. In addition, recommendations from the system can support a midwife's decision making in taking action to pregnant women. The highest accuracy value is found in the 4th test of 82,4324% and the lowest accuracy value in the 2nd test is 75%. The highest precision value was found in the 3rd trial of 79.2% and the lowest precision value in the 2nd trial of 76.3%. The highest recall value was found in the 4th trial of 82.4% and the lowest recall value in the 2nd trial of 75%. The highest F-Measure value was found in the 3rd trial of 79.2% and the lowest F-Measure value in the 2nd trial of 74.8%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Naive Bayes算法的实施,旨在检测准妈妈中梅里特斯糖尿病的高危(案例研究:马隆县Puskesmas)
孕妇患糖尿病会增加孕产妇和新生儿的风险。孕妇体内存在葡萄糖稳态障碍。发生先天性畸形、失败、先兆子痫风险、CPD(Cepalo-Pelvik畸形)、早产、致命异常、早产血浆和新生儿低血糖。因此,要充分重视和照顾糖尿病孕妇。挖掘数据可用于检测孕妇的高危糖尿病。用于检测孕妇高危糖尿病的数据,如姓名、年龄、妊娠年龄、妊娠、男性、既往妊娠、病史、危险因素、既往妊娠。并非所有的妊娠在转换过程中都能正常或生理地进行,有一些风险因素会影响它。在这项研究中,它可以检测孕妇和子宫内婴儿的风险。最高准确度在82.4324%的4次测试中,最低准确度在75%的2次测试中。最高准确率为79.2%,最低准确率为76.3%。最高召回率为82.4%,最低召回率为75%。试验3的F值最高,为79.2%,试验2的F值最低,为74.8%。摘要孕妇糖尿病会增加孕产妇和新生儿的各种风险。孕妇体内葡萄糖稳态紊乱。发生先天畸形、流产、先兆子痫风险、CPD(Cepalo Pelvic Disportion)、早产、体位异常、前置胎盘和新生儿低血糖。因此,重视并综合治疗妊娠期糖尿病妇女。数据挖掘可用于检测孕妇患糖尿病的高风险。所使用的数据包括姓名、年龄、胎龄、妊娠、para、既往妊娠史、既往病史、危险因素、既往分娩史,以检测孕妇患糖尿病的高风险。并非所有的妊娠在分娩时都能正常或生理地进行,有一些风险因素会影响它。在这项研究中,它可以检测孕妇及其子宫内婴儿的风险。此外,该系统的建议可以支持助产士对孕妇采取行动的决策。第四次测试的准确度最高,为824324%,第二次测试的最低准确度为75%。第三次试验的准确度最高,为79.2%,第二次试验的精确度最低,为76.3%。第四次试验的召回率最高,为82.4%,第二次试验的召回度最低,为75%。第三次试验中的F测量值最高,为79.2%,第二次试验中F测量值最低,为74.8%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
16 weeks
期刊最新文献
Schedule Cat Feeder Berbasis Internet of Things Menggunakan Wemos D1 Mini dan Telegram Preprocessing Data dan Klasifikasi untuk Prediksi Kinerja Akademik Siswa Peningkatan Performa Pengenalan Wajah pada Gambar Low-Resolution Menggunakan Metode Super-Resolution Analisis Sentimen Ulasan Rumah Makan Menggunakan Perbandingan Algoritma Support Vector Machine dengan Naive bayes (Studi Kasus: Ayam Goreng Nelongso Cabang Singosari, Malang) Model Classifer Judul Berita Pariwisata Indonesia Berdasarkan Sentimen
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1