Towards Improved Power Management in Cloud GPUs

IF 1.4 3区 计算机科学 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE Computer Architecture Letters Pub Date : 2023-03-22 DOI:10.1109/LCA.2023.3278652
Pratyush Patel;Zibo Gong;Syeda Rizvi;Esha Choukse;Pulkit Misra;Thomas Anderson;Akshitha Sriraman
{"title":"Towards Improved Power Management in Cloud GPUs","authors":"Pratyush Patel;Zibo Gong;Syeda Rizvi;Esha Choukse;Pulkit Misra;Thomas Anderson;Akshitha Sriraman","doi":"10.1109/LCA.2023.3278652","DOIUrl":null,"url":null,"abstract":"As modern server GPUs are increasingly power intensive, better power management mechanisms can significantly reduce the power consumption, capital costs, and carbon emissions in large cloud datacenters. This letter uses diverse datacenter workloads to study the power management capabilities of modern GPUs. We find that current GPU management mechanisms have limited compatibility and monitoring support under cloud virtualization. They have sub-optimal, imprecise, and non-intuitive implementations of Dynamic Voltage and Frequency Scaling (DVFS) and power capping. Consequently, efficient GPU power management is not widely deployed in clouds today. To address these issues, we make actionable recommendations for GPU vendors and researchers.","PeriodicalId":51248,"journal":{"name":"IEEE Computer Architecture Letters","volume":"22 2","pages":"141-144"},"PeriodicalIF":1.4000,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Computer Architecture Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10130639/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 4

Abstract

As modern server GPUs are increasingly power intensive, better power management mechanisms can significantly reduce the power consumption, capital costs, and carbon emissions in large cloud datacenters. This letter uses diverse datacenter workloads to study the power management capabilities of modern GPUs. We find that current GPU management mechanisms have limited compatibility and monitoring support under cloud virtualization. They have sub-optimal, imprecise, and non-intuitive implementations of Dynamic Voltage and Frequency Scaling (DVFS) and power capping. Consequently, efficient GPU power management is not widely deployed in clouds today. To address these issues, we make actionable recommendations for GPU vendors and researchers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
改进云gpu的电源管理
随着现代服务器gpu的功耗越来越高,更好的电源管理机制可以显著降低大型云数据中心的功耗、资本成本和碳排放。本文使用不同的数据中心工作负载来研究现代gpu的电源管理功能。我们发现当前的GPU管理机制在云虚拟化下的兼容性和监控支持有限。它们在动态电压和频率缩放(DVFS)和功率封顶方面具有次优、不精确和非直观的实现。因此,高效的GPU电源管理在今天的云中并没有广泛部署。为了解决这些问题,我们为GPU供应商和研究人员提出了可行的建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Computer Architecture Letters
IEEE Computer Architecture Letters COMPUTER SCIENCE, HARDWARE & ARCHITECTURE-
CiteScore
4.60
自引率
4.30%
发文量
29
期刊介绍: IEEE Computer Architecture Letters is a rigorously peer-reviewed forum for publishing early, high-impact results in the areas of uni- and multiprocessor computer systems, computer architecture, microarchitecture, workload characterization, performance evaluation and simulation techniques, and power-aware computing. Submissions are welcomed on any topic in computer architecture, especially but not limited to: microprocessor and multiprocessor systems, microarchitecture and ILP processors, workload characterization, performance evaluation and simulation techniques, compiler-hardware and operating system-hardware interactions, interconnect architectures, memory and cache systems, power and thermal issues at the architecture level, I/O architectures and techniques, independent validation of previously published results, analysis of unsuccessful techniques, domain-specific processor architectures (e.g., embedded, graphics, network, etc.), real-time and high-availability architectures, reconfigurable systems.
期刊最新文献
A Flexible Hybrid Interconnection Design for High-Performance and Energy-Efficient Chiplet-Based Systems Efficient Implementation of Knuth Yao Sampler on Reconfigurable Hardware SmartQuant: CXL-Based AI Model Store in Support of Runtime Configurable Weight Quantization Proactive Embedding on Cold Data for Deep Learning Recommendation Model Training Octopus: A Cycle-Accurate Cache System Simulator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1