Machine learning as a successful approach for predicting complex spatio–temporal patterns in animal species abundance

IF 1 4区 环境科学与生态学 Q3 BIODIVERSITY CONSERVATION Animal Biodiversity and Conservation Pub Date : 2021-09-14 DOI:10.32800/abc.2021.44.0289
B. Martín, J. González-Arias, J. A. Vicente-Virseda
{"title":"Machine learning as a successful approach for predicting complex spatio–temporal patterns in animal species abundance","authors":"B. Martín, J. González-Arias, J. A. Vicente-Virseda","doi":"10.32800/abc.2021.44.0289","DOIUrl":null,"url":null,"abstract":"Our aim was to identify an optimal analytical approach for accurately predicting complex spatio–temporal patterns in animal species distribution. We compared the performance of eight modelling techniques (generalized additive models, regression trees, bagged CART, k–nearest neighbors, stochastic gradient boosting, support vector machines, neural network, and random forest –enhanced form of bootstrap. We also performed extreme gradient boosting –an enhanced form of radiant boosting– to predict spatial patterns in abundance of migrating Balearic shearwaters based on data gathered within eBird. Derived from open–source datasets, proxies of frontal systems and ocean productivity domains that have been previously used to characterize the oceanographic habitats of seabirds were quantified, and then used as predictors in the models. The random\nforest model showed the best performance according to the parameters assessed (RMSE value and R2). The correlation between observed and predicted abundance with this model was also considerably high. This study shows that the combination of machine learning techniques and massive data provided by open data sources is a useful approach for identifying the long–term spatial–temporal distribution of species at regional spatial scales.","PeriodicalId":49107,"journal":{"name":"Animal Biodiversity and Conservation","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal Biodiversity and Conservation","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.32800/abc.2021.44.0289","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 4

Abstract

Our aim was to identify an optimal analytical approach for accurately predicting complex spatio–temporal patterns in animal species distribution. We compared the performance of eight modelling techniques (generalized additive models, regression trees, bagged CART, k–nearest neighbors, stochastic gradient boosting, support vector machines, neural network, and random forest –enhanced form of bootstrap. We also performed extreme gradient boosting –an enhanced form of radiant boosting– to predict spatial patterns in abundance of migrating Balearic shearwaters based on data gathered within eBird. Derived from open–source datasets, proxies of frontal systems and ocean productivity domains that have been previously used to characterize the oceanographic habitats of seabirds were quantified, and then used as predictors in the models. The random forest model showed the best performance according to the parameters assessed (RMSE value and R2). The correlation between observed and predicted abundance with this model was also considerably high. This study shows that the combination of machine learning techniques and massive data provided by open data sources is a useful approach for identifying the long–term spatial–temporal distribution of species at regional spatial scales.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机器学习作为预测动物物种丰度复杂时空模式的成功方法
我们的目的是确定一种准确预测动物物种分布复杂时空格局的最佳分析方法。我们比较了八种建模技术(广义加性模型、回归树、袋装CART、k近邻、随机梯度增强、支持向量机、神经网络和随机森林增强形式的bootstrap)的性能。基于eBird收集的数据,我们还进行了极端梯度增强——一种增强形式的辐射增强——来预测巴利阿里海鸥迁徙的空间格局。来源于开源数据集的锋面系统和海洋生产力域的代用物被量化,然后用作模型中的预测因子。这些代用物以前被用于表征海鸟的海洋栖息地。根据评估的参数(RMSE值和R2),随机森林模型表现出最好的性能。用该模型观测到的丰度和预测的丰度之间的相关性也相当高。该研究表明,将机器学习技术与开放数据源提供的海量数据相结合,是在区域空间尺度上识别物种长期时空分布的有效方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Animal Biodiversity and Conservation
Animal Biodiversity and Conservation 农林科学-动物学
CiteScore
2.00
自引率
0.00%
发文量
21
审稿时长
>12 weeks
期刊介绍: Animal Biodiversity and Conservation (antes Miscel·lània Zoològica) es una revista interdisciplinar, publicada desde 1958 por el Museu de Ciències Naturals de Barcelona. Incluye artículos de investigación empírica y teórica en todas las áreas de la zoología (sistemática, taxonomía, morfología, biogeografía, ecología, etología, fisiología y genética) procedentes de todas las regiones del mundo. La revista presta especial interés a los estudios que planteen un problema nuevo o introduzcan un tema nuevo, con hipòtesis y prediccions claras, y a los trabajos que de una manera u otra tengan relevancia en la biología de la conservación. No se publicaran artículos puramente descriptivos, o artículos faunísticos o corológicos en los que se describa la distribución en el espacio o en el tiempo de los organismes zoológicos.
期刊最新文献
Transmission of the polymorphic dorsal pattern of the Iberian painted frog Discoglossus galganoi is compatible with simple Mendelian inheritance Walkways as an environmental enrichment tool on sandy beaches? A case study with ghost crabs (Crustacea, Ocypodidae) Phylogenetic analysis of a region of mitochondrial cox-1 as a DNA barcode marker sequence of Gazella subgutturosa (Goitered gazelle) in Mongolia Comparison of nestling diet between first and second broods of great tits Parus major in urban and forest habitats Spatial distribution of two invasive freshwater snails and environmental correlates of the mollusc community abundance, a case study in Chile
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1