Metal-organic framework based on iron and terephthalic acid as a multiporous support for lipase Burkholderia lata LBBIO-BL02 and its potential for biocatalysis
A. M. Baron, Ricardo de Sousa Rodrigues, Luis Guilherme Giannina Sante, Jocácia Muriele de Miranda Kister, Valéria Marta Gomes do Nascimento, Alesandro Bail
{"title":"Metal-organic framework based on iron and terephthalic acid as a multiporous support for lipase Burkholderia lata LBBIO-BL02 and its potential for biocatalysis","authors":"A. M. Baron, Ricardo de Sousa Rodrigues, Luis Guilherme Giannina Sante, Jocácia Muriele de Miranda Kister, Valéria Marta Gomes do Nascimento, Alesandro Bail","doi":"10.1080/10242422.2022.2068371","DOIUrl":null,"url":null,"abstract":"Abstract Metal-organic frameworks (MOFs) are versatile materials because they have a large internal surface area and tuneable pores, making them suitable for enzyme immobilization. In this study, we prepared a typical microporous Fe-BDC MOF through a thermal treatment to produce additional meso and macropores interconnected to each other, capable of immobilizing the Burkholderia lata LBBIO-BL02 (BLL) lipase by entrapment and physical adsorption. The immobilization efficiency (E) was 90%, and the activity retention (R) was 400% (pNPP hydrolysis). The immobilized lipase (BLL@BDC) also showed excellent activity in the hydrolysis of vegetable oils in aqueous medium, achieving up to 3,200 U g−1 for olive oil, as well as high stability in organic solvents, especially for polar ones, such as iso-propanol (101.5 ± 2.6%), ethanol (103.0 ± 6.0%) and acetone (107.7 ± 8.3%). The results indicate that the multiporous Fe-BDC MOF is a promising support for lipase immobilization and further application in biocatalysis performed in organic media. Graphical Abstract","PeriodicalId":8824,"journal":{"name":"Biocatalysis and Biotransformation","volume":"41 1","pages":"332 - 343"},"PeriodicalIF":1.4000,"publicationDate":"2022-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biocatalysis and Biotransformation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10242422.2022.2068371","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract Metal-organic frameworks (MOFs) are versatile materials because they have a large internal surface area and tuneable pores, making them suitable for enzyme immobilization. In this study, we prepared a typical microporous Fe-BDC MOF through a thermal treatment to produce additional meso and macropores interconnected to each other, capable of immobilizing the Burkholderia lata LBBIO-BL02 (BLL) lipase by entrapment and physical adsorption. The immobilization efficiency (E) was 90%, and the activity retention (R) was 400% (pNPP hydrolysis). The immobilized lipase (BLL@BDC) also showed excellent activity in the hydrolysis of vegetable oils in aqueous medium, achieving up to 3,200 U g−1 for olive oil, as well as high stability in organic solvents, especially for polar ones, such as iso-propanol (101.5 ± 2.6%), ethanol (103.0 ± 6.0%) and acetone (107.7 ± 8.3%). The results indicate that the multiporous Fe-BDC MOF is a promising support for lipase immobilization and further application in biocatalysis performed in organic media. Graphical Abstract
期刊介绍:
Biocatalysis and Biotransformation publishes high quality research on the application of biological catalysts for the synthesis, interconversion or degradation of chemical species.
Papers are published in the areas of:
Mechanistic principles
Kinetics and thermodynamics of biocatalytic processes
Chemical or genetic modification of biocatalysts
Developments in biocatalyst''s immobilization
Activity and stability of biocatalysts in non-aqueous and multi-phasic environments, including the design of large scale biocatalytic processes
Biomimetic systems
Environmental applications of biocatalysis
Metabolic engineering
Types of articles published are; full-length original research articles, reviews, short communications on the application of biotransformations, and preliminary reports of novel catalytic activities.