Sathy Suresh, S. Shanthi, A. G. Madaki, M. Sathish Kumar, C. Raju
{"title":"Linear and Quadratic Radiation of Dynamical Non-Fourier Flux in a Disk Flow with the Suspension of Hybrid Nanoparticles","authors":"Sathy Suresh, S. Shanthi, A. G. Madaki, M. Sathish Kumar, C. Raju","doi":"10.1166/jon.2023.1994","DOIUrl":null,"url":null,"abstract":"Considering putting in diverse nanoparticles to the base fluid is the latest technique to increase the thermal accomplishment of ordinary fluids. for the present investigation, the flow and heat transfer of nanofluids over a spinning disk with an invariable stretching pace is observed.\n The non-Fourier flux, magnetic field, and radian heat have all been paid regard to. The nanoparticle used here is Graphene with water as a base fluid. The governing equations are reshaped by utilizing Von Karman transformation and worked it out numerically via boundary value problem solver\n (bvp5c). We also provided some of the results with magnetic field and beside magnetic field cases and found disparity in both circumstances. Results pointed out that with little proliferation in stretching force constant, the skin friction and the local Nusselt number, the velocity in radial\n and axial paths improved, when the velocity in the tangential trend and the thermal boundary layer thickness reduce, significantly.","PeriodicalId":47161,"journal":{"name":"Journal of Nanofluids","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanofluids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/jon.2023.1994","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Considering putting in diverse nanoparticles to the base fluid is the latest technique to increase the thermal accomplishment of ordinary fluids. for the present investigation, the flow and heat transfer of nanofluids over a spinning disk with an invariable stretching pace is observed.
The non-Fourier flux, magnetic field, and radian heat have all been paid regard to. The nanoparticle used here is Graphene with water as a base fluid. The governing equations are reshaped by utilizing Von Karman transformation and worked it out numerically via boundary value problem solver
(bvp5c). We also provided some of the results with magnetic field and beside magnetic field cases and found disparity in both circumstances. Results pointed out that with little proliferation in stretching force constant, the skin friction and the local Nusselt number, the velocity in radial
and axial paths improved, when the velocity in the tangential trend and the thermal boundary layer thickness reduce, significantly.
期刊介绍:
Journal of Nanofluids (JON) is an international multidisciplinary peer-reviewed journal covering a wide range of research topics in the field of nanofluids and fluid science. It is an ideal and unique reference source for scientists and engineers working in this important and emerging research field of science, engineering and technology. The journal publishes full research papers, review articles with author''s photo and short biography, and communications of important new findings encompassing the fundamental and applied research in all aspects of science and engineering of nanofluids and fluid science related developing technologies.