Autism Spectrum Disorder Diagnosis Assistance using Machine Learning

Arthur Alexandre Artoni, C. Barbosa, Marcelo Morandini
{"title":"Autism Spectrum Disorder Diagnosis Assistance using Machine Learning","authors":"Arthur Alexandre Artoni, C. Barbosa, Marcelo Morandini","doi":"10.22456/2175-2745.126309","DOIUrl":null,"url":null,"abstract":"Autism Spectrum Disorder (ASD) is a common but complex disorder to diagnose since there are no imaging or blood tests that can detect ASD. Several techniques can be used, such as diagnostic scales that contain specific questionnaires formulated by specialists that serve as a guide in the diagnostic process. In this paper, Machine Learning (ML) was applied on three public databases containing AQ-10 test results for adults, adolescents, and children; as well as other characteristics that could influence the diagnosis of ASD. Experiments were carried out on the databases to list which attributes would be truly relevant for the diagnosis of ASD using ML, which could be of great value for medical students or residents, and for physicians who are not specialists in ASD. The experiments have shown that it is possible to reduce the number of attributes to only 5 while maintaining an Accuracy above 0.9. In the other Database to maintain the same level of Accuracy, the fewer attribute numbers were 7. The Support Vector Machine stood out from the others algorithms used in this paper, obtaining superior results in all scenarios.","PeriodicalId":53421,"journal":{"name":"Revista de Informatica Teorica e Aplicada","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista de Informatica Teorica e Aplicada","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22456/2175-2745.126309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

Autism Spectrum Disorder (ASD) is a common but complex disorder to diagnose since there are no imaging or blood tests that can detect ASD. Several techniques can be used, such as diagnostic scales that contain specific questionnaires formulated by specialists that serve as a guide in the diagnostic process. In this paper, Machine Learning (ML) was applied on three public databases containing AQ-10 test results for adults, adolescents, and children; as well as other characteristics that could influence the diagnosis of ASD. Experiments were carried out on the databases to list which attributes would be truly relevant for the diagnosis of ASD using ML, which could be of great value for medical students or residents, and for physicians who are not specialists in ASD. The experiments have shown that it is possible to reduce the number of attributes to only 5 while maintaining an Accuracy above 0.9. In the other Database to maintain the same level of Accuracy, the fewer attribute numbers were 7. The Support Vector Machine stood out from the others algorithms used in this paper, obtaining superior results in all scenarios.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用机器学习的自闭症谱系障碍诊断辅助
自闭症谱系障碍(ASD)是一种常见但诊断复杂的疾病,因为没有影像学或血液检查可以检测到ASD。可以使用几种技术,例如诊断量表,其中包含由专家制定的具体问卷,作为诊断过程的指南。在本文中,机器学习(ML)应用于包含成人,青少年和儿童的AQ-10测试结果的三个公共数据库;以及其他可能影响ASD诊断的特征。在数据库上进行了实验,以列出哪些属性与使用ML诊断ASD真正相关,这对于医科学生或住院医生以及非ASD专家来说可能具有很大价值。实验表明,可以将属性数量减少到仅5个,同时保持高于0.9的精度。在另一个数据库中,为了保持相同级别的准确性,较少的属性号为7。支持向量机在本文中使用的其他算法中脱颖而出,在所有场景下都获得了优异的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Revista de Informatica Teorica e Aplicada
Revista de Informatica Teorica e Aplicada Computer Science-Computer Science (all)
CiteScore
0.90
自引率
0.00%
发文量
14
期刊最新文献
Evaluación del Rendimiento de una red IPv6 utilizando IPSec en Modo Túnel Aplicación multiplataforma de modelo computacional predictivo Implementación de una solución de Inteligencia de Negocios aplicada al Suministro de Fuerza de Trabajo Análisis de los derechos a la intimidad y privacidad sobre los datos personales en la legislación Ecuatoriana Vulnerabilidades de las cookies en aplicaciones web: Redes Sociales y Streaming
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1