Asymptotic theory in network models with covariates and a growing number of node parameters

IF 0.8 4区 数学 Q3 STATISTICS & PROBABILITY Annals of the Institute of Statistical Mathematics Pub Date : 2022-09-02 DOI:10.1007/s10463-022-00848-0
Qiuping Wang, Yuan Zhang, Ting Yan
{"title":"Asymptotic theory in network models with covariates and a growing number of node parameters","authors":"Qiuping Wang,&nbsp;Yuan Zhang,&nbsp;Ting Yan","doi":"10.1007/s10463-022-00848-0","DOIUrl":null,"url":null,"abstract":"<div><p>We propose a general model that jointly characterizes degree heterogeneity and homophily in weighted, undirected networks. We present a moment estimation method using node degrees and homophily statistics. We establish consistency and asymptotic normality of our estimator using novel analysis. We apply our general framework to three applications, including both exponential family and non-exponential family models. Comprehensive numerical studies and a data example also demonstrate the usefulness of our method.</p></div>","PeriodicalId":55511,"journal":{"name":"Annals of the Institute of Statistical Mathematics","volume":"75 2","pages":"369 - 392"},"PeriodicalIF":0.8000,"publicationDate":"2022-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of the Institute of Statistical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10463-022-00848-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

Abstract

We propose a general model that jointly characterizes degree heterogeneity and homophily in weighted, undirected networks. We present a moment estimation method using node degrees and homophily statistics. We establish consistency and asymptotic normality of our estimator using novel analysis. We apply our general framework to three applications, including both exponential family and non-exponential family models. Comprehensive numerical studies and a data example also demonstrate the usefulness of our method.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有协变和增长节点参数的网络模型的渐近理论
我们提出了一个通用模型,共同表征程度异质性和同质在加权,无向网络。提出了一种基于节点度和同态统计量的矩估计方法。我们用新的分析方法建立了估计量的相合性和渐近正态性。我们将我们的一般框架应用于三种应用,包括指数族和非指数族模型。综合数值研究和一个数据算例也证明了本文方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Annals of the Institute of Statistical Mathematics (AISM) aims to provide a forum for open communication among statisticians, and to contribute to the advancement of statistics as a science to enable humans to handle information in order to cope with uncertainties. It publishes high-quality papers that shed new light on the theoretical, computational and/or methodological aspects of statistical science. Emphasis is placed on (a) development of new methodologies motivated by real data, (b) development of unifying theories, and (c) analysis and improvement of existing methodologies and theories.
期刊最新文献
Confidence bounds for the true discovery proportion based on the exact distribution of the number of rejections Testing overidentifying restrictions on high-dimensional instruments and covariates Comparison and equality of generalized \(\psi \)-estimators Large-sample properties of multiple imputation estimators for parameters of logistic regression with covariates missing at random separately or simultaneously Random mixture Cox point processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1