Capabilities and limitations of tin direct determination using the spectrometry methods with inductively coupled plasma in Azov and Black sea waters

Q4 Chemistry Analitika i Kontrol Pub Date : 2021-06-25 DOI:10.15826/analitika.2021.25.2.007
D. Abakumova, Z. Temerdashev, P. Abakumov
{"title":"Capabilities and limitations of tin direct determination using the spectrometry methods with inductively coupled plasma in Azov and Black sea waters","authors":"D. Abakumova, Z. Temerdashev, P. Abakumov","doi":"10.15826/analitika.2021.25.2.007","DOIUrl":null,"url":null,"abstract":"The current study discussed the capabilities and limitations of tin direct determination in the waters of the Black and Azov Seas using the ICP-MS and ICP-AES methods without the separation and concentration of the analyte. The conditions for the analysis of waters, the influence of dilution and matrix components on the results of the analysis were established. As the salinity of the seawater increased, the slope of the calibration curve decreased, regardless of the detection method used. The leveling of the matrix effect of seawater on the analytical signal of tin was achieved by diluting the sample up to 100 times. A significant decrease in the analytical signal of tin was observed on the samples of seawater characterized by the high salinity. These methods allowed determining tin at the concentrations ranging from 0.33 μg/dm3 (ICP-MS), 0.37 μg/dm3 (ICP-AES) to 5 μg/dm3 in natural (fresh) water or seawater with low salinity level according to the calibration curve of the deionized water. For ICP-MS and ICP-AES determination of tin in seawater with the salinity level above 6‰ and tin concentration of more than 5 μg/dm3, it was required to use the calibration dependence constructed on the model seawater considering the salinity of the object. The studies have shown that the content of tin in the Kuban River is 0.13 μg/dm3. In the Sea of Azov, the concentration of tin in the water, depending on the sampling site, was less than 0.33 μg/dm3 (Taman) and 1.8 μg/dm3 (Temryuk, commercial port). In the Black Sea, the concentration of tin in the seawater samples from Novorossiysk city was higher and ranged from 0.55 μg/dm3 (embankment) to 1.5 μg/dm3 (seaport) and 2.1 μg/dm3 (grain terminal).","PeriodicalId":37743,"journal":{"name":"Analitika i Kontrol","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analitika i Kontrol","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15826/analitika.2021.25.2.007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 0

Abstract

The current study discussed the capabilities and limitations of tin direct determination in the waters of the Black and Azov Seas using the ICP-MS and ICP-AES methods without the separation and concentration of the analyte. The conditions for the analysis of waters, the influence of dilution and matrix components on the results of the analysis were established. As the salinity of the seawater increased, the slope of the calibration curve decreased, regardless of the detection method used. The leveling of the matrix effect of seawater on the analytical signal of tin was achieved by diluting the sample up to 100 times. A significant decrease in the analytical signal of tin was observed on the samples of seawater characterized by the high salinity. These methods allowed determining tin at the concentrations ranging from 0.33 μg/dm3 (ICP-MS), 0.37 μg/dm3 (ICP-AES) to 5 μg/dm3 in natural (fresh) water or seawater with low salinity level according to the calibration curve of the deionized water. For ICP-MS and ICP-AES determination of tin in seawater with the salinity level above 6‰ and tin concentration of more than 5 μg/dm3, it was required to use the calibration dependence constructed on the model seawater considering the salinity of the object. The studies have shown that the content of tin in the Kuban River is 0.13 μg/dm3. In the Sea of Azov, the concentration of tin in the water, depending on the sampling site, was less than 0.33 μg/dm3 (Taman) and 1.8 μg/dm3 (Temryuk, commercial port). In the Black Sea, the concentration of tin in the seawater samples from Novorossiysk city was higher and ranged from 0.55 μg/dm3 (embankment) to 1.5 μg/dm3 (seaport) and 2.1 μg/dm3 (grain terminal).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电感耦合等离子体光谱法在亚速海和黑海直接测定锡的能力和局限性
目前的研究讨论了在不分离和浓缩分析物的情况下,使用ICP-MS和ICP-AES方法直接测定黑海和亚速海水域中锡的能力和局限性。建立了分析水的条件、稀释度和基质成分对分析结果的影响。随着海水盐度的增加,无论使用何种检测方法,校准曲线的斜率都会降低。通过将样品稀释至100倍,实现了海水对锡分析信号的基质效应的均衡化。在以高盐度为特征的海水样品上观察到锡的分析信号显著降低。根据去离子水的校准曲线,这些方法可以在天然(淡水)或低盐度海水中测定0.33μg/dm3(ICP-MS)、0.37μg/dm3(ICP-AES)至5μg/dm3。对于盐度超过6‰、锡浓度超过5μg/dm3的海水中锡的ICP-MS和ICP-AES测定,需要使用在考虑对象盐度的模型海水上构建的校准依赖关系。研究表明,库班河中锡的含量为0.13μg/dm3。在亚速海,根据采样地点的不同,水中锡的浓度分别低于0.33μg/dm3(塔曼)和1.8μg/dm3。在黑海,新罗西斯克市海水样本中的锡浓度较高,范围为0.55μg/dm3(堤坝)至1.5μg/dm3.(海港)和2.1μg/dm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Analitika i Kontrol
Analitika i Kontrol Chemistry-Analytical Chemistry
CiteScore
0.90
自引率
0.00%
发文量
15
期刊介绍: Analitika i Kontrol is a scientific journal covering theoretical and applied aspects of analytical chemistry and analytical control, published since autumn 1997. Founder and publisher of the journal is the Ural Federal University named after the first President of Russia Boris Yeltsin (UrFU, Ekaterinburg).
期刊最新文献
Electrophoretic determination of carboxylic acids in blood serum with intracapillary concentration Fluorescence of anisotropic primary X-ray radiation Selection of the parameters of a multicapillary column for portable gas analyzers by Kovach indices Differentiation of oil samples by isomeric composition of paraffins using cluster analysis methods Important features of retention indices determination in reversed-phase high performance liquid chromatography
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1