{"title":"A Bayesian Analysis of Two-Stage Randomized Experiments in the Presence of Interference, Treatment Nonadherence, and Missing Outcomes","authors":"Yuki Ohnishi, Arman Sabbaghi","doi":"10.1214/22-BA1347","DOIUrl":null,"url":null,"abstract":"Three critical issues for causal inference that often occur in modern, complicated experiments are interference, treatment nonadherence, and missing outcomes. A great deal of research efforts has been dedicated to developing causal inferential methodologies that address these issues separately. However, methodologies that can address these issues simultaneously are lacking. We propose a Bayesian causal inference methodology to address this gap. Our methodology extends existing causal frameworks and methods, specifically, two-staged randomized experiments and the principal stratification framework. In contrast to existing methods that invoke strong structural assumptions to identify principal causal effects, our Bayesian approach uses flexible distributional models that can accommodate the complexities of interference and missing outcomes, and that ensure that principal causal effects are weakly identifiable. We illustrate our methodology via simulation studies and a re-analysis of real-life data from an evaluation of India's National Health Insurance Program. Our methodology enables us to identify new active causal effects that were not identified in past analyses. Ultimately, our simulation studies and case study demonstrate how our methodology can yield more informative analyses in modern experiments with interference, treatment nonadherence, missing outcomes, and complicated outcome generation mechanisms.","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2021-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/22-BA1347","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 4
Abstract
Three critical issues for causal inference that often occur in modern, complicated experiments are interference, treatment nonadherence, and missing outcomes. A great deal of research efforts has been dedicated to developing causal inferential methodologies that address these issues separately. However, methodologies that can address these issues simultaneously are lacking. We propose a Bayesian causal inference methodology to address this gap. Our methodology extends existing causal frameworks and methods, specifically, two-staged randomized experiments and the principal stratification framework. In contrast to existing methods that invoke strong structural assumptions to identify principal causal effects, our Bayesian approach uses flexible distributional models that can accommodate the complexities of interference and missing outcomes, and that ensure that principal causal effects are weakly identifiable. We illustrate our methodology via simulation studies and a re-analysis of real-life data from an evaluation of India's National Health Insurance Program. Our methodology enables us to identify new active causal effects that were not identified in past analyses. Ultimately, our simulation studies and case study demonstrate how our methodology can yield more informative analyses in modern experiments with interference, treatment nonadherence, missing outcomes, and complicated outcome generation mechanisms.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.