A note on the asymptotic stability of the semi-discrete method for stochastic differential equations

IF 0.8 Q3 STATISTICS & PROBABILITY Monte Carlo Methods and Applications Pub Date : 2020-08-06 DOI:10.1515/mcma-2022-2102
N. Halidias, I. Stamatiou
{"title":"A note on the asymptotic stability of the semi-discrete method for stochastic differential equations","authors":"N. Halidias, I. Stamatiou","doi":"10.1515/mcma-2022-2102","DOIUrl":null,"url":null,"abstract":"Abstract We study the asymptotic stability of the semi-discrete (SD) numerical method for the approximation of stochastic differential equations. Recently, we examined the order of ℒ 2 {\\mathcal{L}^{2}} -convergence of the truncated SD method and showed that it can be arbitrarily close to 1 2 {\\frac{1}{2}} ; see [I. S. Stamatiou and N. Halidias, Convergence rates of the semi-discrete method for stochastic differential equations, Theory Stoch. Process. 24 2019, 2, 89–100]. We show that the truncated SD method is able to preserve the asymptotic stability of the underlying SDE. Motivated by a numerical example, we also propose a different SD scheme, using the Lamperti transformation to the original SDE. Numerical simulations support our theoretical findings.","PeriodicalId":46576,"journal":{"name":"Monte Carlo Methods and Applications","volume":"28 1","pages":"13 - 25"},"PeriodicalIF":0.8000,"publicationDate":"2020-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monte Carlo Methods and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/mcma-2022-2102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 3

Abstract

Abstract We study the asymptotic stability of the semi-discrete (SD) numerical method for the approximation of stochastic differential equations. Recently, we examined the order of ℒ 2 {\mathcal{L}^{2}} -convergence of the truncated SD method and showed that it can be arbitrarily close to 1 2 {\frac{1}{2}} ; see [I. S. Stamatiou and N. Halidias, Convergence rates of the semi-discrete method for stochastic differential equations, Theory Stoch. Process. 24 2019, 2, 89–100]. We show that the truncated SD method is able to preserve the asymptotic stability of the underlying SDE. Motivated by a numerical example, we also propose a different SD scheme, using the Lamperti transformation to the original SDE. Numerical simulations support our theoretical findings.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
关于随机微分方程半离散方法的渐近稳定性的注记
研究了随机微分方程半离散(SD)数值逼近方法的渐近稳定性。最近,我们检验了截断SD方法的函数函数的收敛阶数,证明了它可以任意接近于1 2 {\mathcal{L}^{2}};看到我。S. Stamatiou和N. Halidias,随机微分方程半离散方法的收敛率,理论理论。[j].化工学报,2019,(2):89-100。我们证明截断SD方法能够保持底层SDE的渐近稳定性。在一个数值例子的激励下,我们还提出了一种不同的SD方案,使用原始SDE的Lamperti变换。数值模拟支持我们的理论发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Monte Carlo Methods and Applications
Monte Carlo Methods and Applications STATISTICS & PROBABILITY-
CiteScore
1.20
自引率
22.20%
发文量
31
期刊最新文献
Asymmetric kernel method in the study of strong stability of the PH/M/1 queuing system Random walk on spheres method for solving anisotropic transient diffusion problems and flux calculations Strong approximation of a two-factor stochastic volatility model under local Lipschitz condition On the estimation of periodic signals in the diffusion process using a high-frequency scheme Stochastic simulation of electron transport in a strong electrical field in low-dimensional heterostructures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1