EFFECT OF TEMPERATURE AND SOLAR IRRADIANCE ON THE PERFORMANCE OF 50 HZ PHOTOVOLTAIC WIRELESS POWER TRANSFER SYSTEM

IF 0.6 Q3 ENGINEERING, MULTIDISCIPLINARY Jurnal Teknologi-Sciences & Engineering Pub Date : 2023-02-23 DOI:10.11113/jurnalteknologi.v85.18872
M. Irwanto, Y. T. Nugraha, N. Hussin, I. Nisja
{"title":"EFFECT OF TEMPERATURE AND SOLAR IRRADIANCE ON THE PERFORMANCE OF 50 HZ PHOTOVOLTAIC WIRELESS POWER TRANSFER SYSTEM","authors":"M. Irwanto, Y. T. Nugraha, N. Hussin, I. Nisja","doi":"10.11113/jurnalteknologi.v85.18872","DOIUrl":null,"url":null,"abstract":"\n\n\n\nA wireless power transfer (WPT) system transfers an alternating current (AC) power from a TC (transmitter coil) to a RC (receiver coil), using an electromagnetic field concept. Several previous reports on WPT systems were able to transmit this power, although their AC frequencies were high in some kilohertz or megahertz (kHz or MHz). These frequencies were unable to be applied directly on the AC loads or only administered to the direct current (DC) energy after rectification through a rectifier circuit. In the receiver phase, the AC power was also very low, due to the minimum voltage and current on the RC. Therefore, this study aims to determine the effects of temperature and solar irradiance on the performance of the 50 Hz photovoltaic wireless power transfer (PVWPT) system. This system is constructed by some PV modules in series connection, to achieve a required DC voltage level on the DC-DC converter and receiver phase. It also converts DC to AC voltages on the TC (transmitter coil) of an H-bridge inverter, with a receiver circuit and a magnetic relay coil positioned between the TC and RC (transmitter and receiver coil). The results showed that solar irradiance and temperature affected the performances of the PV module and PVWPT system. This indicated that higher solar irradiance increased the performance of the PVWPT system, whose maximum efficiency was achieved by positioning the magnetic relay coil between the TC and RC. \n\n\n\n","PeriodicalId":47541,"journal":{"name":"Jurnal Teknologi-Sciences & Engineering","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Teknologi-Sciences & Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11113/jurnalteknologi.v85.18872","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

Abstract

A wireless power transfer (WPT) system transfers an alternating current (AC) power from a TC (transmitter coil) to a RC (receiver coil), using an electromagnetic field concept. Several previous reports on WPT systems were able to transmit this power, although their AC frequencies were high in some kilohertz or megahertz (kHz or MHz). These frequencies were unable to be applied directly on the AC loads or only administered to the direct current (DC) energy after rectification through a rectifier circuit. In the receiver phase, the AC power was also very low, due to the minimum voltage and current on the RC. Therefore, this study aims to determine the effects of temperature and solar irradiance on the performance of the 50 Hz photovoltaic wireless power transfer (PVWPT) system. This system is constructed by some PV modules in series connection, to achieve a required DC voltage level on the DC-DC converter and receiver phase. It also converts DC to AC voltages on the TC (transmitter coil) of an H-bridge inverter, with a receiver circuit and a magnetic relay coil positioned between the TC and RC (transmitter and receiver coil). The results showed that solar irradiance and temperature affected the performances of the PV module and PVWPT system. This indicated that higher solar irradiance increased the performance of the PVWPT system, whose maximum efficiency was achieved by positioning the magnetic relay coil between the TC and RC. 
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
温度和太阳辐照度对50hz光伏无线电力传输系统性能的影响
无线电力传输(WPT)系统使用电磁场概念将交流电(AC)从TC(发射器线圈)传输到RC(接收器线圈)。之前关于WPT系统的几份报告能够传输这种功率,尽管它们的交流频率高达几千赫兹或兆赫兹(kHz或MHz)。这些频率不能直接施加在AC负载上,或者在通过整流器电路整流之后仅施加到直流(DC)能量。在接收器阶段,由于RC上的最小电压和电流,AC功率也非常低。因此,本研究旨在确定温度和太阳辐照度对50Hz光伏无线功率传输(PVWPT)系统性能的影响。该系统由一些串联的光伏模块构成,以在DC-DC转换器和接收器相位上实现所需的直流电压水平。它还将H桥逆变器的TC(发射器线圈)上的直流电压转换为交流电压,接收器电路和磁性继电器线圈位于TC和RC(发射器和接收器线圈)之间。结果表明,太阳辐照度和温度会影响光伏组件和PVWPT系统的性能。这表明,更高的太阳辐照度提高了PVWPT系统的性能,其最大效率是通过将磁性继电器线圈定位在TC和RC之间来实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Jurnal Teknologi-Sciences & Engineering
Jurnal Teknologi-Sciences & Engineering ENGINEERING, MULTIDISCIPLINARY-
CiteScore
1.30
自引率
0.00%
发文量
96
期刊最新文献
A RECENT REVIEW OF THE SANDWICH-STRUCTURED COMPOSITE METAMATERIALS: STATIC AND DYNAMIC ANALYSIS ANALYSIS OF ACTIVE SECONDARY SUSPENSION WITH MODIFIED SKYHOOK CONTROLLER TO IMPROVE RIDE PERFORMANCE OF RAILWAY VEHICLE DESIGNING THE TECHNOLOGY FOR TURBIDITY SENSOR-BASED AUTOMATIC RIVER SEDIMENTATION MEASUREMENT CFD SIMULATION AND VALIDATION FOR MIXING VENTILATION SCALED-DOWN EMPTY AIRCRAFT CABIN USING OPENFOAM COMPARATIVE STUDY OF CONFIGURATIONS FOR PHOTOVOLTAIC-THERMOELECTRIC GENERATOR COGENERATION SYSTEM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1