DEVELOPMENT OF EFFECTIVE CATALYSTS FOR PROCESSING C3-C4 HYDROCARBONS

S. Rasulov, G. Mustafayeva
{"title":"DEVELOPMENT OF EFFECTIVE CATALYSTS FOR PROCESSING C3-C4 HYDROCARBONS","authors":"S. Rasulov, G. Mustafayeva","doi":"10.32014/2021.2518-1491.56","DOIUrl":null,"url":null,"abstract":"The aim of the article is to study the effect of preparation and activation methods of a modified zeolite-containing catalyst on the activity and stability of catalytic properties displayed by it during the conversion of C3-C4 hydrocarbons. During the experiment, the industrial cracking catalyst OMNIKAT, which is a zeolite in the sodium form, was used as the initial one. Zinc, gallium, and REE (rare earth elements) were sequentially applied to decationized samples of this catalyst by ion exchange, impregnation, and dry mechanical mixing, and the effect of these methods on the catalytic properties of the zeolite-containing catalyst was observed. As a result of a comparative analysis of the regularities of aromatization of C3-C4 hydrocarbons, it was found that the mechanical mixing method is the most preferable, since it provides the best process performance. In order to improve the activity and stability of the catalysts, thermocouple and thermal activations were carried out during the preparation process. Further, differences were revealed for the thermocouple and thermal activation of the modified catalyst and their effect on the activity and selectivity of the zinc-galliumzeolite-containing catalyst with respect to ArH (aromatic hydrocarbons) in the process of conversion of C3-C4 hydrocarbons. The choice of these particular operations was dictated by the fact that preliminary thermal and thermal vapor treatment of the catalyst practically does not require significant capital expenditures, i.e., economically most acceptable. Regularities of reaction-regeneration cycles were established. Thus, the optimal technological parameters for the regeneration of catalytic compositions are: temperature - 600°C, atmospheric pressure, oxidizer - air feed rate - 2 h-1, which lead to the restoration of the activity and selectivity of the spent catalyst to the fresh level. Studies of the of oxidative regeneration process a zinc-gallium-zeolite-containing catalyst have shown that while maintaining a clearly regulated regeneration regime, the activity of the latter is restored. The main task of the research was the development of effective catalysts for the conversion of C3- C4 hydrocarbons. Therefore, in the first place, we compared the conversion rates and selectivity for ArH. The proposed catalyst is characterized by good operational properties (high activity and long service life), providing 59.2% by weight of the target product yield at 98.8% conversion of C3-C4 hydrocarbons.","PeriodicalId":43167,"journal":{"name":"News of the National Academy of Sciences of the Republic of Kazakhstan-Series Chemistry and Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"News of the National Academy of Sciences of the Republic of Kazakhstan-Series Chemistry and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32014/2021.2518-1491.56","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The aim of the article is to study the effect of preparation and activation methods of a modified zeolite-containing catalyst on the activity and stability of catalytic properties displayed by it during the conversion of C3-C4 hydrocarbons. During the experiment, the industrial cracking catalyst OMNIKAT, which is a zeolite in the sodium form, was used as the initial one. Zinc, gallium, and REE (rare earth elements) were sequentially applied to decationized samples of this catalyst by ion exchange, impregnation, and dry mechanical mixing, and the effect of these methods on the catalytic properties of the zeolite-containing catalyst was observed. As a result of a comparative analysis of the regularities of aromatization of C3-C4 hydrocarbons, it was found that the mechanical mixing method is the most preferable, since it provides the best process performance. In order to improve the activity and stability of the catalysts, thermocouple and thermal activations were carried out during the preparation process. Further, differences were revealed for the thermocouple and thermal activation of the modified catalyst and their effect on the activity and selectivity of the zinc-galliumzeolite-containing catalyst with respect to ArH (aromatic hydrocarbons) in the process of conversion of C3-C4 hydrocarbons. The choice of these particular operations was dictated by the fact that preliminary thermal and thermal vapor treatment of the catalyst practically does not require significant capital expenditures, i.e., economically most acceptable. Regularities of reaction-regeneration cycles were established. Thus, the optimal technological parameters for the regeneration of catalytic compositions are: temperature - 600°C, atmospheric pressure, oxidizer - air feed rate - 2 h-1, which lead to the restoration of the activity and selectivity of the spent catalyst to the fresh level. Studies of the of oxidative regeneration process a zinc-gallium-zeolite-containing catalyst have shown that while maintaining a clearly regulated regeneration regime, the activity of the latter is restored. The main task of the research was the development of effective catalysts for the conversion of C3- C4 hydrocarbons. Therefore, in the first place, we compared the conversion rates and selectivity for ArH. The proposed catalyst is characterized by good operational properties (high activity and long service life), providing 59.2% by weight of the target product yield at 98.8% conversion of C3-C4 hydrocarbons.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
C3-C4烃类高效催化剂的研制
研究了改性沸石催化剂的制备和活化方法对其在C3-C4烃转化过程中所表现出的催化性能的活性和稳定性的影响。实验中,以钠型沸石OMNIKAT作为工业裂化催化剂。通过离子交换、浸渍、干燥机械混合等方法,将锌、镓、REE(稀土元素)依次加入到脱离子催化剂样品中,观察这些方法对含沸石催化剂催化性能的影响。通过对C3-C4烃芳构化规律的对比分析,发现机械混合法具有最佳的工艺性能,是最理想的方法。为了提高催化剂的活性和稳定性,在制备过程中进行了热电偶活化和热活化。此外,还揭示了改性催化剂的热电偶和热活化的差异,以及它们对含锌镓沸石催化剂在C3-C4烃转化过程中对ArH(芳烃)的活性和选择性的影响。这些特殊操作的选择取决于这样一个事实,即催化剂的初步热和热蒸汽处理实际上不需要大量的资本支出,即经济上最可接受的。建立了反应-再生循环规律。因此,催化组合物再生的最佳工艺参数为:温度- 600°C,大气压,氧化剂-空气进料速度- 2 h-1,从而使废催化剂的活性和选择性恢复到新鲜水平。对含锌镓沸石催化剂氧化再生过程的研究表明,在保持一个明确调节的再生制度的同时,后者的活性得到恢复。研究的主要任务是开发C3- C4烃转化的有效催化剂。因此,我们首先比较了ArH的转化率和选择性。该催化剂具有良好的操作性能(活性高、使用寿命长),C3-C4烃转化率为98.8%,产率为目标产品重量的59.2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
24
期刊最新文献
DETERMINATION OF LITHIUM CONCENTRATION IN INDUSTRIAL WATERS OF SHU-SARYSU PROVINCE BY ELECTROPHORESIS METHOD THE ROLE OF DEPOLARIZERS IN THE PROCESSES OF HYDROGEN RELEASE FROM WATER ON THE ALUMINUM AMALGAM SURFACE DESCRIPTION OF NONLINEAR OSCILLATIONS OF A PERTURBED FILM IN ITS COLLISION WITH LIQUID DROPS APPLICATION OF BENTONITE CLAY AS A PROTECTIVE BARRIER IN THE DISPOSAL OF RADIOACTIVE WASTE OF NUCLEAR INDUSTRY OF KAZAKHSTAN PREPARATION AND PHYSICO–CHEMICAL CHARACTERIZATION OF ORGANICALLY MODIFIED CLAYS WITH GRAFTED DMSO AND TEOA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1