Future applications of the high-flux thermal neutron spectroscopy: the ever-green case of collective excitations in liquid metals

IF 7.7 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Advances in Physics: X Pub Date : 2021-01-01 DOI:10.1080/23746149.2021.1871862
C. Petrillo, F. Sacchetti
{"title":"Future applications of the high-flux thermal neutron spectroscopy: the ever-green case of collective excitations in liquid metals","authors":"C. Petrillo, F. Sacchetti","doi":"10.1080/23746149.2021.1871862","DOIUrl":null,"url":null,"abstract":"ABSTRACT The European landscape of neutron sources for research applications is changing and the major European joint effort, the European Spallation Source (ESS) currently under construction in Lund (Sweden), is progressing. The high flux source ESS is designed to deliver slow neutrons with a long-pulse time structure, a rather unique feature, with characteristics optimised to maximise the instrument performances and the experimental throughput. This is expected to result in unprecedented scientific capability over broad research areas. Major breakthroughs are likely to take place in the understanding of complex, strongly interacting and disordered systems, more specifically on their dynamical response. This will have an impact on the development of novel theories to cover some of the presently existing knowledge gaps and will prompt advanced applications of the investigated materials. Liquid metals are a prototypical example of complex systems extensively studied from the sixties on, now re-emerging as powerful functional materials for unconventional and broad spectrum applications. Research on liquid metal composites will benefit of the new experimental possibilities available at the ESS. We review the status of the experiments on liquid metals dynamics, focusing on a selected set of systems, and discuss the perspectives for cutting-edge experiments at the new sources. Graphical abstract","PeriodicalId":7374,"journal":{"name":"Advances in Physics: X","volume":null,"pages":null},"PeriodicalIF":7.7000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23746149.2021.1871862","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Physics: X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1080/23746149.2021.1871862","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 5

Abstract

ABSTRACT The European landscape of neutron sources for research applications is changing and the major European joint effort, the European Spallation Source (ESS) currently under construction in Lund (Sweden), is progressing. The high flux source ESS is designed to deliver slow neutrons with a long-pulse time structure, a rather unique feature, with characteristics optimised to maximise the instrument performances and the experimental throughput. This is expected to result in unprecedented scientific capability over broad research areas. Major breakthroughs are likely to take place in the understanding of complex, strongly interacting and disordered systems, more specifically on their dynamical response. This will have an impact on the development of novel theories to cover some of the presently existing knowledge gaps and will prompt advanced applications of the investigated materials. Liquid metals are a prototypical example of complex systems extensively studied from the sixties on, now re-emerging as powerful functional materials for unconventional and broad spectrum applications. Research on liquid metal composites will benefit of the new experimental possibilities available at the ESS. We review the status of the experiments on liquid metals dynamics, focusing on a selected set of systems, and discuss the perspectives for cutting-edge experiments at the new sources. Graphical abstract
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高通量热中子能谱的未来应用:液态金属中集体激发的绿色案例
摘要欧洲用于研究应用的中子源格局正在发生变化,欧洲的主要合作项目——目前正在瑞典隆德建造的欧洲散裂源(ESS)正在取得进展。高通量源ESS设计用于输送具有长脉冲时间结构的慢中子,这是一个相当独特的特征,其特性经过优化以最大限度地提高仪器性能和实验吞吐量。预计这将在广泛的研究领域产生前所未有的科学能力。在理解复杂、强相互作用和无序系统方面,特别是在其动力学响应方面,可能会取得重大突破。这将对新理论的发展产生影响,以弥补目前存在的一些知识空白,并将促进所研究材料的先进应用。液态金属是从60年代开始广泛研究的复杂系统的典型例子,现在又重新成为非常规和广谱应用的强大功能材料。对液态金属复合材料的研究将受益于ESS提供的新的实验可能性。我们回顾了液体金属动力学实验的现状,重点关注一组选定的系统,并讨论了在新来源进行尖端实验的前景。图形摘要
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in Physics: X
Advances in Physics: X Physics and Astronomy-General Physics and Astronomy
CiteScore
13.60
自引率
0.00%
发文量
37
审稿时长
13 weeks
期刊介绍: Advances in Physics: X is a fully open-access journal that promotes the centrality of physics and physical measurement to modern science and technology. Advances in Physics: X aims to demonstrate the interconnectivity of physics, meaning the intellectual relationships that exist between one branch of physics and another, as well as the influence of physics across (hence the “X”) traditional boundaries into other disciplines including: Chemistry Materials Science Engineering Biology Medicine
期刊最新文献
The Maxwell’s equations for a mechano-driven media system (MEs-f-MDMS) Probing excitons with time-resolved momentum microscopy Pore-scale viscous fingering as a mechanism for pattern formation – a historical overview, application, and the ways of controlling it Orbital angular momentum of Bloch electrons: equilibrium formulation, magneto-electric phenomena, and the orbital Hall effect Multiscale modelling of biopolymers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1