Charge carrier dynamics in 2D materials probed by ultrafast THzspectroscopy

IF 7.7 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Advances in Physics: X Pub Date : 2022-09-30 DOI:10.1080/23746149.2022.2120416
E. Cinquanta, Eva A. A. Pogna, L. Gatto, S. Stagira, C. Vozzi
{"title":"Charge carrier dynamics in 2D materials probed by ultrafast THzspectroscopy","authors":"E. Cinquanta, Eva A. A. Pogna, L. Gatto, S. Stagira, C. Vozzi","doi":"10.1080/23746149.2022.2120416","DOIUrl":null,"url":null,"abstract":"ABSTRACT In this review, we discuss the rich ultrafast response at terahertz (THz) frequencies of two-dimensional (2D) materials. Thanks to their unique optoelectronic properties and exceptional tunability, van der Waals organic and inorganic 2D materials, such as graphene, transition metal dichalcogenides (TMDs), and 2D perovskites, are emerging as promising platforms for the development of nano-electronic and nano-photonic devices in the THz range. The investigation of the ultrafast charge carriers dynamics resulting from their reduced dimensionality is crucial for guiding the engineering route towards novel nanotechnologies. Here, we first give a brief overview of the state-of-the-art experimental schemes for inspecting the ultrafast response of 2D materials in the THz range, including the generation and the detection of THz light and the prototypical optical pump THz probe setup. Then, we present and discuss the most relevant results, reviewing the THz ultrafast signatures of charge carriers and excitons dynamics in graphene, TMDs, and 2D perovskites. Finally, we provide a vision of the emerging tools for characterizing the ultrafast THz dynamics at the nanoscale. Graphical Abstract","PeriodicalId":7374,"journal":{"name":"Advances in Physics: X","volume":null,"pages":null},"PeriodicalIF":7.7000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Physics: X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1080/23746149.2022.2120416","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

Abstract

ABSTRACT In this review, we discuss the rich ultrafast response at terahertz (THz) frequencies of two-dimensional (2D) materials. Thanks to their unique optoelectronic properties and exceptional tunability, van der Waals organic and inorganic 2D materials, such as graphene, transition metal dichalcogenides (TMDs), and 2D perovskites, are emerging as promising platforms for the development of nano-electronic and nano-photonic devices in the THz range. The investigation of the ultrafast charge carriers dynamics resulting from their reduced dimensionality is crucial for guiding the engineering route towards novel nanotechnologies. Here, we first give a brief overview of the state-of-the-art experimental schemes for inspecting the ultrafast response of 2D materials in the THz range, including the generation and the detection of THz light and the prototypical optical pump THz probe setup. Then, we present and discuss the most relevant results, reviewing the THz ultrafast signatures of charge carriers and excitons dynamics in graphene, TMDs, and 2D perovskites. Finally, we provide a vision of the emerging tools for characterizing the ultrafast THz dynamics at the nanoscale. Graphical Abstract
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超快太赫兹光谱探测二维材料中的载流子动力学
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in Physics: X
Advances in Physics: X Physics and Astronomy-General Physics and Astronomy
CiteScore
13.60
自引率
0.00%
发文量
37
审稿时长
13 weeks
期刊介绍: Advances in Physics: X is a fully open-access journal that promotes the centrality of physics and physical measurement to modern science and technology. Advances in Physics: X aims to demonstrate the interconnectivity of physics, meaning the intellectual relationships that exist between one branch of physics and another, as well as the influence of physics across (hence the “X”) traditional boundaries into other disciplines including: Chemistry Materials Science Engineering Biology Medicine
期刊最新文献
The Maxwell’s equations for a mechano-driven media system (MEs-f-MDMS) Probing excitons with time-resolved momentum microscopy Pore-scale viscous fingering as a mechanism for pattern formation – a historical overview, application, and the ways of controlling it Orbital angular momentum of Bloch electrons: equilibrium formulation, magneto-electric phenomena, and the orbital Hall effect Multiscale modelling of biopolymers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1