Deep-Learning-based Human Intention Prediction with Data Augmentation

Shengchao Li, Lin Zhang, Xiumin Diao
{"title":"Deep-Learning-based Human Intention Prediction with Data Augmentation","authors":"Shengchao Li, Lin Zhang, Xiumin Diao","doi":"10.5121/ijaia.2022.13101","DOIUrl":null,"url":null,"abstract":"Data augmentation has been broadly applied in training deep-learning models to increase the diversity of data. This study ingestigates the effectiveness of different data augmentation methods for deep-learningbased human intention prediction when only limited training data is available. A human participant pitches a ball to nine potential targets in our experiment. We expect to predict which target the participant pitches the ball to. Firstly, the effectiveness of 10 data augmentation groups is evaluated on a single-participant data set using RGB images. Secondly, the best data augmentation method (i.e., random cropping) on the single-participant data set is further evaluated on a multi-participant data set to assess its generalization ability. Finally, the effectiveness of random cropping on fusion data of RGB images and optical flow is evaluated on both single- and multi-participant data sets. Experiment results show that: 1) Data augmentation methods that crop or deform images can improve the prediction performance; 2) Random cropping can be generalized to the multi-participant data set (prediction accuracy is improved from 50% to 57.4%); and 3) Random cropping with fusion data of RGB images and optical flow can further improve the prediction accuracy from 57.4% to 63.9% on the multi-participant data set.","PeriodicalId":93188,"journal":{"name":"International journal of artificial intelligence & applications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of artificial intelligence & applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/ijaia.2022.13101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Data augmentation has been broadly applied in training deep-learning models to increase the diversity of data. This study ingestigates the effectiveness of different data augmentation methods for deep-learningbased human intention prediction when only limited training data is available. A human participant pitches a ball to nine potential targets in our experiment. We expect to predict which target the participant pitches the ball to. Firstly, the effectiveness of 10 data augmentation groups is evaluated on a single-participant data set using RGB images. Secondly, the best data augmentation method (i.e., random cropping) on the single-participant data set is further evaluated on a multi-participant data set to assess its generalization ability. Finally, the effectiveness of random cropping on fusion data of RGB images and optical flow is evaluated on both single- and multi-participant data sets. Experiment results show that: 1) Data augmentation methods that crop or deform images can improve the prediction performance; 2) Random cropping can be generalized to the multi-participant data set (prediction accuracy is improved from 50% to 57.4%); and 3) Random cropping with fusion data of RGB images and optical flow can further improve the prediction accuracy from 57.4% to 63.9% on the multi-participant data set.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习的数据增强人类意向预测
数据增强已广泛应用于深度学习模型的训练,以增加数据的多样性。本文研究了在训练数据有限的情况下,不同的数据增强方法对基于深度学习的人类意图预测的有效性。在我们的实验中,一个人类参与者向九个潜在目标投一个球。我们期望预测参与者将球投向哪个目标。首先,在使用RGB图像的单参与者数据集上评估了10个数据增强组的有效性。其次,在多参与者数据集上进一步评估单参与者数据集上的最佳数据增强方法(即随机裁剪),以评估其泛化能力。最后,在单参与者和多参与者数据集上评估了随机裁剪对RGB图像和光流融合数据的有效性。实验结果表明:1)对图像进行裁剪或变形的数据增强方法可以提高预测性能;2)随机裁剪可以推广到多参与者数据集(预测精度从50%提高到57.4%);3) RGB图像与光流融合数据的随机裁剪可以进一步将多参与者数据集的预测精度从57.4%提高到63.9%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Characteristics of Networks Generated by Kernel Growing Neural Gas Identifying Text Classification Failures in Multilingual AI-Generated Content Subverting Characters Stereotypes: Exploring the Role of AI in Stereotype Subversion Performance Evaluation of Block-Sized Algorithms for Majority Vote in Facial Recognition Sentiment Analysis in Indian Elections: Unraveling Public Perception of the Karnataka Elections With Transformers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1