Asymptotic properties of correlation-based principal component analysis

IF 4 3区 经济学 Q1 ECONOMICS Journal of Econometrics Pub Date : 2022-07-01 DOI:10.1016/j.jeconom.2021.08.003
Jungjun Choi, Xiye Yang
{"title":"Asymptotic properties of correlation-based principal component analysis","authors":"Jungjun Choi,&nbsp;Xiye Yang","doi":"10.1016/j.jeconom.2021.08.003","DOIUrl":null,"url":null,"abstract":"<div><p>It is a common practice to conduct principal component analysis<span><span> (PCA) using standardized data, which is equivalent to applying PCA to the correlation matrix<span> rather than the covariance matrix. Yet little research has been done about such differences in the context of high frequency data. This paper bridges this gap. We derive the analytical forms of the asymptotic biases and variances for the estimators of the integrated eigenvalues and </span></span>eigenvectors<span>. Furthermore, we propose a novel jackknife-type estimator of the asymptotic variance of the integrated volatility functional estimator. This new variance estimator shows much better finite sample performances compared to other existing ones. This paper also proposes several statistical tests for some commonly tested hypotheses in the literature. Simulation results show that one will get misleading results if one uses the analytical results of the covariance case when applying PCA on the correlation matrix.</span></span></p></div>","PeriodicalId":15629,"journal":{"name":"Journal of Econometrics","volume":"229 1","pages":"Pages 1-18"},"PeriodicalIF":4.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometrics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304407621002050","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 3

Abstract

It is a common practice to conduct principal component analysis (PCA) using standardized data, which is equivalent to applying PCA to the correlation matrix rather than the covariance matrix. Yet little research has been done about such differences in the context of high frequency data. This paper bridges this gap. We derive the analytical forms of the asymptotic biases and variances for the estimators of the integrated eigenvalues and eigenvectors. Furthermore, we propose a novel jackknife-type estimator of the asymptotic variance of the integrated volatility functional estimator. This new variance estimator shows much better finite sample performances compared to other existing ones. This paper also proposes several statistical tests for some commonly tested hypotheses in the literature. Simulation results show that one will get misleading results if one uses the analytical results of the covariance case when applying PCA on the correlation matrix.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于相关的主成分分析的渐近性质
使用标准化数据进行主成分分析(PCA)是一种常见的做法,这相当于将PCA应用于相关矩阵而不是协方差矩阵。然而,关于高频数据背景下的这种差异的研究很少。本文填补了这一空白。导出了积分特征值和特征向量估计量的渐近偏差和渐近方差的解析形式。在此基础上,提出了一种新的综合波动性泛函渐近方差的刀型估计。与现有的方差估计器相比,这种新的方差估计器具有更好的有限样本性能。本文还对一些文献中常用的假设提出了几种统计检验。仿真结果表明,在对相关矩阵进行主成分分析时,如果使用协方差情况的分析结果,将会得到误导性的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Econometrics
Journal of Econometrics 社会科学-数学跨学科应用
CiteScore
8.60
自引率
1.60%
发文量
220
审稿时长
3-8 weeks
期刊介绍: The Journal of Econometrics serves as an outlet for important, high quality, new research in both theoretical and applied econometrics. The scope of the Journal includes papers dealing with identification, estimation, testing, decision, and prediction issues encountered in economic research. Classical Bayesian statistics, and machine learning methods, are decidedly within the range of the Journal''s interests. The Annals of Econometrics is a supplement to the Journal of Econometrics.
期刊最新文献
Estimating a conditional density ratio model for asset returns and option demand Semiparametric estimation of duration model with time-varying regressors and fixed effects Diffusion index forecasting with tensor data Convolution-t distributions To be or not to be: Roughness or long memory in volatility?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1