Combined economic and emission dispatch using whale optimisation algorithm

Q3 Business, Management and Accounting International Journal of Enterprise Network Management Pub Date : 2019-03-05 DOI:10.1504/IJENM.2019.10019585
C. K. Faseela, H. Vennila
{"title":"Combined economic and emission dispatch using whale optimisation algorithm","authors":"C. K. Faseela, H. Vennila","doi":"10.1504/IJENM.2019.10019585","DOIUrl":null,"url":null,"abstract":"This paper highlight the use of latest whale optimisation meta heuristic algorithm for solving economic dispatch problem efficiently. This is used to solve the combined economic and emission dispatch problems for standard three generators system and 30 bus IEEE system. The whale optimisation algorithm was found to provide optimum results with easy convergence in comparison with other algorithms like PSO algorithm. Fuel cost and emission costs are combined to derive better result for economic dispatch. For checking the effectiveness of the algorithm, the results obtained using the same are compared with the results of particle swarm optimisation (PSO) and analysed the same against minimum generation cost and easy convergence. The results are found to be excellent for the systems considered.","PeriodicalId":39284,"journal":{"name":"International Journal of Enterprise Network Management","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Enterprise Network Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJENM.2019.10019585","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Business, Management and Accounting","Score":null,"Total":0}
引用次数: 1

Abstract

This paper highlight the use of latest whale optimisation meta heuristic algorithm for solving economic dispatch problem efficiently. This is used to solve the combined economic and emission dispatch problems for standard three generators system and 30 bus IEEE system. The whale optimisation algorithm was found to provide optimum results with easy convergence in comparison with other algorithms like PSO algorithm. Fuel cost and emission costs are combined to derive better result for economic dispatch. For checking the effectiveness of the algorithm, the results obtained using the same are compared with the results of particle swarm optimisation (PSO) and analysed the same against minimum generation cost and easy convergence. The results are found to be excellent for the systems considered.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用鲸鱼优化算法的经济和排放联合调度
本文强调使用最新的鲸鱼优化元启发式算法来有效地解决经济调度问题。它用于解决标准三发电机系统和30总线IEEE系统的经济和排放调度问题。与PSO算法等其他算法相比,鲸鱼优化算法可以提供易于收敛的优化结果。将燃料成本和排放成本相结合,得出更好的经济调度结果。为了检查该算法的有效性,将使用该算法获得的结果与粒子群优化(PSO)的结果进行了比较,并针对最小生成成本和容易收敛性对其进行了分析。对于所考虑的系统,结果是极好的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Enterprise Network Management
International Journal of Enterprise Network Management Business, Management and Accounting-Management of Technology and Innovation
CiteScore
0.90
自引率
0.00%
发文量
28
期刊最新文献
Multi-tier firm-level analysis of global auto supply chain: centrality and financial performance Development of coating material for low carbon steels using MCDM Multi-objective optimisation of wear process parameters of 413/fly ash composites using grey relational analysis Fashion market segmentation using Facebook: an empirical approach Development of coating material for low carbon steels using MCDM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1