Environmental factors influencing call propagation in Pithecopus nordestinus: testing the acoustic adaptation hypothesis

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2022-03-03 DOI:10.1080/09524622.2022.2042855
Lidiane Gomes, D. L. Röhr, R. Sousa-lima, A. A. Garda, F. Juncá
{"title":"Environmental factors influencing call propagation in Pithecopus nordestinus: testing the acoustic adaptation hypothesis","authors":"Lidiane Gomes, D. L. Röhr, R. Sousa-lima, A. A. Garda, F. Juncá","doi":"10.1080/09524622.2022.2042855","DOIUrl":null,"url":null,"abstract":"ABSTRACT The acoustic adaptation hypothesis (AAH) states that the acoustic signal of a species must propagate better in its native habitat. Studies have shown that certain anuran species modify acoustic parameters according to the environment where they are calling. However, these studies did not verify if these modifications improved the call’s transmission. We investigated whether advertisement calls of Pithecopus nordestinus (Phyllomedusidade)propagated more efficiently in two habitats where the species has evolved over generations (Caatinga and Atlantic Forest) and, according to the predictions of the AAH, whether specific acoustic parameters (number of pulses, interval between pulses and dominant frequency) maximise transmission. We measured the efficiency of the transmitted signal (natural and synthesised calls) in different environments. Our results showed that natural calls from Caatinga habitats were less degraded. We found that synthetised calls with shorter intervals between pulses propagated just as well in both the Caatinga and the Atlantic Forests. Finally, the dominant frequency was influenced by the propagation environment and, synthetised calls with higher frequencies showed less degradation when propagated in the Caatinga. Our results indicate that not all differences found in the acoustic parameters of anuran calls in distinct environments can be attributed to the acoustic adaptation hypothesis.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/09524622.2022.2042855","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

ABSTRACT The acoustic adaptation hypothesis (AAH) states that the acoustic signal of a species must propagate better in its native habitat. Studies have shown that certain anuran species modify acoustic parameters according to the environment where they are calling. However, these studies did not verify if these modifications improved the call’s transmission. We investigated whether advertisement calls of Pithecopus nordestinus (Phyllomedusidade)propagated more efficiently in two habitats where the species has evolved over generations (Caatinga and Atlantic Forest) and, according to the predictions of the AAH, whether specific acoustic parameters (number of pulses, interval between pulses and dominant frequency) maximise transmission. We measured the efficiency of the transmitted signal (natural and synthesised calls) in different environments. Our results showed that natural calls from Caatinga habitats were less degraded. We found that synthetised calls with shorter intervals between pulses propagated just as well in both the Caatinga and the Atlantic Forests. Finally, the dominant frequency was influenced by the propagation environment and, synthetised calls with higher frequencies showed less degradation when propagated in the Caatinga. Our results indicate that not all differences found in the acoustic parameters of anuran calls in distinct environments can be attributed to the acoustic adaptation hypothesis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
环境因素对东北棘猴叫声传播的影响:声学适应假说的检验
声学适应假说(AAH)认为物种的声信号必须在其原生栖息地更好地传播。研究表明,某些无尾猿物种会根据它们发出叫声的环境改变声音参数。然而,这些研究并没有证实这些修改是否改善了呼叫的传输。我们研究了北地鼠(Phyllomedusidade)的广告叫声是否在两个物种已经进化了几代的栖息地(Caatinga和Atlantic Forest)中更有效地传播,以及根据AAH的预测,特定的声学参数(脉冲数、脉冲间隔和主导频率)是否最大化了传播。我们测量了在不同环境下传输信号(自然和合成呼叫)的效率。结果表明,来自Caatinga栖息地的自然叫声退化程度较低。我们发现脉冲之间间隔较短的合成叫声在卡廷加森林和大西洋森林中传播得一样好。最后,主导频率受传播环境的影响,较高频率的合成呼叫在Caatinga中传播时衰减较小。我们的研究结果表明,并非所有在不同环境中发现的无尾猿叫声的声学参数差异都可以归因于声学适应假说。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1