Millisecond synthesis of CoS nanoparticles for highly efficient overall water splitting

IF 9.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Nano Research Pub Date : 2019-02-22 DOI:10.1007/s12274-019-2304-0
Yanan Chen, Shaomao Xu, Shuze Zhu, Rohit Jiji Jacob, Glenn Pastel, Yanbin Wang, Yiju Li, Jiaqi Dai, Fengjuan Chen, Hua Xie, Boyang Liu, Yonggang Yao, Lourdes G. Salamanca-Riba, Michael R. Zachariah, Teng Li, Liangbing Hu
{"title":"Millisecond synthesis of CoS nanoparticles for highly efficient overall water splitting","authors":"Yanan Chen,&nbsp;Shaomao Xu,&nbsp;Shuze Zhu,&nbsp;Rohit Jiji Jacob,&nbsp;Glenn Pastel,&nbsp;Yanbin Wang,&nbsp;Yiju Li,&nbsp;Jiaqi Dai,&nbsp;Fengjuan Chen,&nbsp;Hua Xie,&nbsp;Boyang Liu,&nbsp;Yonggang Yao,&nbsp;Lourdes G. Salamanca-Riba,&nbsp;Michael R. Zachariah,&nbsp;Teng Li,&nbsp;Liangbing Hu","doi":"10.1007/s12274-019-2304-0","DOIUrl":null,"url":null,"abstract":"<p>High performance and low-cost electrocatalysts for overall water splitting, i.e., catalyzing hydrogen and oxygen evolution reactions with the same material, are of great importance for large-scale, renewable energy conversion processes. Here, we report an ultrafast (~ 7 ms) synthesis technique for transition metal chalcogenide nanoparticles assisted by high temperature treatment. As a proof of concept, we demonstrate that cobalt sulfide (~ 20 nm in diameter)@ few-layer graphene (~ 2 nm in thickness) core-shell nanoparticles embedded in RGO nanosheets exhibit remarkable bifunctional electrocatalytic activity and stability for overall water splitting, which is comparable to commercial 40 wt.% platinum/carbon (Pt/C) electrocatalysts. After 60 h of continuous operation, 10 mA·cm<sup>?2</sup> water splitting current density can still be achieved at a low potential of ~ 1.77 V without any activity decay, which is among the most active for non-noble material based electrocatalysts. The presented study provides prospects in synthesizing highly efficient bifunctional electrocatalysts for large-scale energy conversion application via a simple yet efficient technique.</p>","PeriodicalId":713,"journal":{"name":"Nano Research","volume":null,"pages":null},"PeriodicalIF":9.5000,"publicationDate":"2019-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12274-019-2304-0","citationCount":"72","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Research","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12274-019-2304-0","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 72

Abstract

High performance and low-cost electrocatalysts for overall water splitting, i.e., catalyzing hydrogen and oxygen evolution reactions with the same material, are of great importance for large-scale, renewable energy conversion processes. Here, we report an ultrafast (~ 7 ms) synthesis technique for transition metal chalcogenide nanoparticles assisted by high temperature treatment. As a proof of concept, we demonstrate that cobalt sulfide (~ 20 nm in diameter)@ few-layer graphene (~ 2 nm in thickness) core-shell nanoparticles embedded in RGO nanosheets exhibit remarkable bifunctional electrocatalytic activity and stability for overall water splitting, which is comparable to commercial 40 wt.% platinum/carbon (Pt/C) electrocatalysts. After 60 h of continuous operation, 10 mA·cm?2 water splitting current density can still be achieved at a low potential of ~ 1.77 V without any activity decay, which is among the most active for non-noble material based electrocatalysts. The presented study provides prospects in synthesizing highly efficient bifunctional electrocatalysts for large-scale energy conversion application via a simple yet efficient technique.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于高效整体水分解的CoS纳米颗粒的毫秒合成
高性能和低成本的电催化剂用于整体水分解,即用相同的材料催化氢和氧的析出反应,对于大规模的可再生能源转化过程具有重要意义。本文报道了一种在高温处理下超快(~ 7 ms)合成过渡金属硫族化物纳米颗粒的技术。作为概念证明,我们证明了嵌入还原氧化石墨烯纳米片中的硫化钴(直径~ 20nm)@少层石墨烯(厚度~ 2nm)核壳纳米颗粒具有显著的双功能电催化活性和整体水分解的稳定性,可与商用40 wt.%铂/碳(Pt/C)电催化剂相比较。连续工作60 h后,10 mA·cm?2 .在~ 1.77 V的低电位下仍然可以实现水分裂电流密度,而没有任何活性衰减,这是非贵金属基电催化剂中最活跃的。本研究为通过一种简单而高效的技术合成高效双功能电催化剂以实现大规模能量转换提供了前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Research
Nano Research 化学-材料科学:综合
CiteScore
14.30
自引率
11.10%
发文量
2574
审稿时长
1.7 months
期刊介绍: Nano Research is a peer-reviewed, international and interdisciplinary research journal that focuses on all aspects of nanoscience and nanotechnology. It solicits submissions in various topical areas, from basic aspects of nanoscale materials to practical applications. The journal publishes articles on synthesis, characterization, and manipulation of nanomaterials; nanoscale physics, electrical transport, and quantum physics; scanning probe microscopy and spectroscopy; nanofluidics; nanosensors; nanoelectronics and molecular electronics; nano-optics, nano-optoelectronics, and nano-photonics; nanomagnetics; nanobiotechnology and nanomedicine; and nanoscale modeling and simulations. Nano Research offers readers a combination of authoritative and comprehensive Reviews, original cutting-edge research in Communication and Full Paper formats. The journal also prioritizes rapid review to ensure prompt publication.
期刊最新文献
Thermodynamically induced crystal restructuring to make CsPbCl3 single crystal films for weak light detection Pressure-responsive pH-triggered layer-by-layer coating of paclitaxel-eluting balloon catheters for instant high-dose drug delivery for percutaneous coronary artery intervention Processing of molybdenum industrial waste into sustainable and efficient nanocatalysts for water electrolysis reactions On the role of Zn and Fe doping in nitrogen-carbon electrocatalysts for oxygen reduction Innovative hydrogel-based delivery systems for immunotherapy: A review of pre-clinical progress
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1