{"title":"GBDTMO: as new option for early-stage breast cancer detection and classification using machine learning","authors":"Vibith A. S., Jobin Christ M C","doi":"10.1080/00051144.2023.2226946","DOIUrl":null,"url":null,"abstract":"Breast cancer is the second leading cause of disease death in women, after lung and bronchus cancer. According to measurements, mammography misses breast cancer in 10% to 15% of cases for women aged 50 to 69 years. In the current study, we used the Wisconsin breast cancer dataset to develop a two-stage model for breast cancer diagnosis. The main goal of this study effort is to effectively carry out feature selection and classification tasks. Gradient Boosting Decision Tree-based Mayfly Optimisation (GBDTMO), an innovative and efficient breast cancer diagnostic machine learning system, is provided. In the second stage, we employ a Mayfly search to determine which subset of traits is the best. Two more well-known datasets on breast cancer, the ICCR and the Cancer Corpus, were also compared for classification accuracy. The accuracy of the suggested GBDTMO model was higher than that of the existing GBDT and Practical Federated Gradient Boosting Decision Tree (PFGBDT), which had accuracy values of 93.25% and 94.25%, respectively. Similarly, the recall, F-measure, and ROC area values were 98.52%, 97.52%, and 96.32%, respectively. Furthermore, it demonstrated a lower RMSE of 0.98 than the existing GBDT and PFGBDT.","PeriodicalId":55412,"journal":{"name":"Automatika","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automatika","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/00051144.2023.2226946","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Breast cancer is the second leading cause of disease death in women, after lung and bronchus cancer. According to measurements, mammography misses breast cancer in 10% to 15% of cases for women aged 50 to 69 years. In the current study, we used the Wisconsin breast cancer dataset to develop a two-stage model for breast cancer diagnosis. The main goal of this study effort is to effectively carry out feature selection and classification tasks. Gradient Boosting Decision Tree-based Mayfly Optimisation (GBDTMO), an innovative and efficient breast cancer diagnostic machine learning system, is provided. In the second stage, we employ a Mayfly search to determine which subset of traits is the best. Two more well-known datasets on breast cancer, the ICCR and the Cancer Corpus, were also compared for classification accuracy. The accuracy of the suggested GBDTMO model was higher than that of the existing GBDT and Practical Federated Gradient Boosting Decision Tree (PFGBDT), which had accuracy values of 93.25% and 94.25%, respectively. Similarly, the recall, F-measure, and ROC area values were 98.52%, 97.52%, and 96.32%, respectively. Furthermore, it demonstrated a lower RMSE of 0.98 than the existing GBDT and PFGBDT.
AutomatikaAUTOMATION & CONTROL SYSTEMS-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
4.00
自引率
5.30%
发文量
65
审稿时长
4.5 months
期刊介绍:
AUTOMATIKA – Journal for Control, Measurement, Electronics, Computing and Communications is an international scientific journal that publishes scientific and professional papers in the field of automatic control, robotics, measurements, electronics, computing, communications and related areas. Click here for full Focus & Scope.
AUTOMATIKA is published since 1960, and since 1991 by KoREMA - Croatian Society for Communications, Computing, Electronics, Measurement and Control, Member of IMEKO and IFAC.