Phylomitogenomics reveals mito-nuclear concordance in social wasps: The performance of mitochondrial markers and gene order for hymenopteran systematics
Rodolpho S. T. Menezes, Fernando B. Noll, Marcos Aragão, Marcel G. Hermes, Seán G. Brady
{"title":"Phylomitogenomics reveals mito-nuclear concordance in social wasps: The performance of mitochondrial markers and gene order for hymenopteran systematics","authors":"Rodolpho S. T. Menezes, Fernando B. Noll, Marcos Aragão, Marcel G. Hermes, Seán G. Brady","doi":"10.1111/syen.12604","DOIUrl":null,"url":null,"abstract":"<p>Mitochondrial (mtDNA) genes have served as widely utilised genetic loci for phylogenetic and phylogeographic studies of animals. However, the phylogenetic performance of many mtDNA genes has not been empirically evaluated across lineages within hymenopteran wasps. To address this question, we assembled and analysed mitogenomic data from social wasps, representing the four recognised tribes of Polistinae and all Epiponini genera. Additionally, we evaluated whether mtDNA gene order in Polistinae is congruent with its tribal classification. Using concatenation phylogenetic methods, we show phylogenetic congruence between mitogenomic and nuclear data. Statistically comparing the phylogenetic performance of individual mtDNA genes, we demonstrate that for social wasps the molecular markers COI, 16S, NAD5, and NAD2 perform best, while ATP6, COII, and 12S show the worst results. Finally, we verified that the tRNA cluster close to the noncoding region is a hotspot of genetic rearrangements in Vespidae and can be used as additional information for the systematics of this group. Together, these results indicate that mitogenomes contain robust phylogenetic signal to elucidate the evolutionary history of Vespidae. Moreover, our study identifies the best choice of mtDNA markers for systematic investigations of social wasps.</p>","PeriodicalId":22126,"journal":{"name":"Systematic Entomology","volume":"49 1","pages":"15-27"},"PeriodicalIF":4.7000,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systematic Entomology","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/syen.12604","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Mitochondrial (mtDNA) genes have served as widely utilised genetic loci for phylogenetic and phylogeographic studies of animals. However, the phylogenetic performance of many mtDNA genes has not been empirically evaluated across lineages within hymenopteran wasps. To address this question, we assembled and analysed mitogenomic data from social wasps, representing the four recognised tribes of Polistinae and all Epiponini genera. Additionally, we evaluated whether mtDNA gene order in Polistinae is congruent with its tribal classification. Using concatenation phylogenetic methods, we show phylogenetic congruence between mitogenomic and nuclear data. Statistically comparing the phylogenetic performance of individual mtDNA genes, we demonstrate that for social wasps the molecular markers COI, 16S, NAD5, and NAD2 perform best, while ATP6, COII, and 12S show the worst results. Finally, we verified that the tRNA cluster close to the noncoding region is a hotspot of genetic rearrangements in Vespidae and can be used as additional information for the systematics of this group. Together, these results indicate that mitogenomes contain robust phylogenetic signal to elucidate the evolutionary history of Vespidae. Moreover, our study identifies the best choice of mtDNA markers for systematic investigations of social wasps.
期刊介绍:
Systematic Entomology publishes original papers on insect systematics, phylogenetics and integrative taxonomy, with a preference for general interest papers of broad biological, evolutionary or zoogeographical relevance.