OmniCrawl: Comprehensive Measurement of Web Tracking With Real Desktop and Mobile Browsers

Darion Cassel, Su-Chin Lin, Alessio Buraggina, William Wang, Andrew Zhang, Lujo Bauer, H. Hsiao, Limin Jia, Timothy Libert
{"title":"OmniCrawl: Comprehensive Measurement of Web Tracking With Real Desktop and Mobile Browsers","authors":"Darion Cassel, Su-Chin Lin, Alessio Buraggina, William Wang, Andrew Zhang, Lujo Bauer, H. Hsiao, Limin Jia, Timothy Libert","doi":"10.2478/popets-2022-0012","DOIUrl":null,"url":null,"abstract":"Abstract Over half of all visits to websites now take place in a mobile browser, yet the majority of web privacy studies take the vantage point of desktop browsers, use emulated mobile browsers, or focus on just a single mobile browser instead. In this paper, we present a comprehensive web-tracking measurement study on mobile browsers and privacy-focused mobile browsers. Our study leverages a new web measurement infrastructure, OmniCrawl, which we develop to drive browsers on desktop computers and smartphones located on two continents. We capture web tracking measurements using 42 different non-emulated browsers simultaneously. We find that the third-party advertising and tracking ecosystem of mobile browsers is more similar to that of desktop browsers than previous findings suggested. We study privacy-focused browsers and find their protections differ significantly and in general are less for lower-ranked sites. Our findings also show that common methodological choices made by web measurement studies, such as the use of emulated mobile browsers and Selenium, can lead to website behavior that deviates from what actual users experience.","PeriodicalId":74556,"journal":{"name":"Proceedings on Privacy Enhancing Technologies. Privacy Enhancing Technologies Symposium","volume":"2022 1","pages":"227 - 252"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings on Privacy Enhancing Technologies. Privacy Enhancing Technologies Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/popets-2022-0012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Abstract Over half of all visits to websites now take place in a mobile browser, yet the majority of web privacy studies take the vantage point of desktop browsers, use emulated mobile browsers, or focus on just a single mobile browser instead. In this paper, we present a comprehensive web-tracking measurement study on mobile browsers and privacy-focused mobile browsers. Our study leverages a new web measurement infrastructure, OmniCrawl, which we develop to drive browsers on desktop computers and smartphones located on two continents. We capture web tracking measurements using 42 different non-emulated browsers simultaneously. We find that the third-party advertising and tracking ecosystem of mobile browsers is more similar to that of desktop browsers than previous findings suggested. We study privacy-focused browsers and find their protections differ significantly and in general are less for lower-ranked sites. Our findings also show that common methodological choices made by web measurement studies, such as the use of emulated mobile browsers and Selenium, can lead to website behavior that deviates from what actual users experience.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
OmniCrawl:使用真实桌面和移动浏览器进行Web跟踪的综合测量
现在超过一半的网站访问都是在移动浏览器中进行的,然而大多数网络隐私研究都采用桌面浏览器的优势,使用模拟的移动浏览器,或者只关注单一的移动浏览器。在本文中,我们提出了一个全面的网络跟踪测量研究的移动浏览器和隐私为重点的移动浏览器。我们的研究利用了一种新的网络测量基础设施——OmniCrawl,它是我们开发的,用于驱动位于两大洲的台式电脑和智能手机上的浏览器。我们同时使用42种不同的非模拟浏览器捕获网络跟踪测量。我们发现,移动浏览器的第三方广告和跟踪生态系统与桌面浏览器的生态系统比之前的研究结果更相似。我们研究了以隐私为重点的浏览器,发现它们的保护措施差别很大,通常对排名较低的网站的保护程度较低。我们的研究结果还表明,网络测量研究中常见的方法选择,如使用模拟移动浏览器和Selenium,可能导致网站行为偏离实际用户体验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
16 weeks
期刊最新文献
Editors' Introduction Compact and Divisible E-Cash with Threshold Issuance On the Robustness of Topics API to a Re-Identification Attack DP-SIPS: A simpler, more scalable mechanism for differentially private partition selection Privacy-Preserving Federated Recurrent Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1