Method of model checking for case II interval-censored data under the additive hazards model

Pub Date : 2023-02-16 DOI:10.1002/cjs.11759
Yanqin Feng, Ming Tang, Jieli Ding
{"title":"Method of model checking for case II interval-censored data under the additive hazards model","authors":"Yanqin Feng,&nbsp;Ming Tang,&nbsp;Jieli Ding","doi":"10.1002/cjs.11759","DOIUrl":null,"url":null,"abstract":"<p>General or case II interval-censored data are commonly encountered in practice. We develop methods for model-checking and goodness-of-fit testing for the additive hazards model with case II interval-censored data. We propose test statistics based on the supremum of the stochastic processes derived from the cumulative sum of martingale-based residuals over time and covariates. We approximate the distribution of the stochastic process via a simulation technique to conduct a class of graphical and numerical techniques for various purposes of model-fitting evaluations. Simulation studies are conducted to assess the finite-sample performance of the proposed method. A real dataset from an AIDS observational study is analyzed for illustration.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11759","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

General or case II interval-censored data are commonly encountered in practice. We develop methods for model-checking and goodness-of-fit testing for the additive hazards model with case II interval-censored data. We propose test statistics based on the supremum of the stochastic processes derived from the cumulative sum of martingale-based residuals over time and covariates. We approximate the distribution of the stochastic process via a simulation technique to conduct a class of graphical and numerical techniques for various purposes of model-fitting evaluations. Simulation studies are conducted to assess the finite-sample performance of the proposed method. A real dataset from an AIDS observational study is analyzed for illustration.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
加性危害模型下案例II区间截尾数据的模型检验方法
在实践中经常会遇到一般或情况 II 区间删失数据。我们开发了使用情况 II 间隔删失数据的加性危险模型的模型检查和拟合优度检验方法。我们提出的检验统计量是基于马氏残差随时间和协变量的累积和得出的随机过程的上峰。我们通过模拟技术对随机过程的分布进行了近似,从而为模型拟合评估的各种目的提供了一类图形和数值技术。我们进行了模拟研究,以评估所提出方法的有限样本性能。为说明起见,还分析了一项艾滋病观察研究的真实数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1