{"title":"Synthesis of branched cyclodextrins using activated carbon as a catalyst","authors":"Kandai Ishikura, Kazunori Yanagihara, Hiroki Takagi","doi":"10.1007/s10847-021-01089-z","DOIUrl":null,"url":null,"abstract":"<div><p>Activated carbon has been reported to act as a catalyst for condensation reactions between glucose molecules. The present study describes the use of activated carbon as a new catalyst for the synthesis of branched cyclodextrins (CDs). Two main methods have been used to synthesize branched CDs: a method using an enzymatic condensation or transfer reaction, and a method using a chemical reaction. However, these methods have problems such as a limited number of the types of branched CDs that can be synthesized that depend on the characteristics of the enzyme, the long reaction time required (several days or more), difficulty in synthesizing branched CD with a high degree of substitution (DS), the need for large quantities of environmentally harmful solvents, and a complicated and costly reaction. Using activated carbon as a catalyst, branched CDs with a high DS could be synthesized within a relatively short time (a few hours), regardless of the type of saccharide in the branched portion. Furthermore, since the reaction was conducted under solvent-free conditions using activated carbon, the amount of solvent used in the production of branched CD could be reduced. The branched β-CDs prepared using the activated carbon catalyst showed high solubility, high solubilization capacity, and low hemolytic activity, similar to the 2-hydroxypropyl-β-CD used for pharmaceuticals. These results indicate that activated carbon is an industrially and environmentally useful catalyst for branched CD syntheses.</p></div>","PeriodicalId":638,"journal":{"name":"Journal of Inclusion Phenomena and Macrocyclic Chemistry","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2021-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10847-021-01089-z","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inclusion Phenomena and Macrocyclic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10847-021-01089-z","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Activated carbon has been reported to act as a catalyst for condensation reactions between glucose molecules. The present study describes the use of activated carbon as a new catalyst for the synthesis of branched cyclodextrins (CDs). Two main methods have been used to synthesize branched CDs: a method using an enzymatic condensation or transfer reaction, and a method using a chemical reaction. However, these methods have problems such as a limited number of the types of branched CDs that can be synthesized that depend on the characteristics of the enzyme, the long reaction time required (several days or more), difficulty in synthesizing branched CD with a high degree of substitution (DS), the need for large quantities of environmentally harmful solvents, and a complicated and costly reaction. Using activated carbon as a catalyst, branched CDs with a high DS could be synthesized within a relatively short time (a few hours), regardless of the type of saccharide in the branched portion. Furthermore, since the reaction was conducted under solvent-free conditions using activated carbon, the amount of solvent used in the production of branched CD could be reduced. The branched β-CDs prepared using the activated carbon catalyst showed high solubility, high solubilization capacity, and low hemolytic activity, similar to the 2-hydroxypropyl-β-CD used for pharmaceuticals. These results indicate that activated carbon is an industrially and environmentally useful catalyst for branched CD syntheses.
期刊介绍:
The Journal of Inclusion Phenomena and Macrocyclic Chemistry is the premier interdisciplinary publication reporting on original research into all aspects of host-guest systems. Examples of specific areas of interest are: the preparation and characterization of new hosts and new host-guest systems, especially those involving macrocyclic ligands; crystallographic, spectroscopic, thermodynamic and theoretical studies; applications in chromatography and inclusion polymerization; enzyme modelling; molecular recognition and catalysis by inclusion compounds; intercalates in biological and non-biological systems, cyclodextrin complexes and their applications in the agriculture, flavoring, food and pharmaceutical industries; synthesis, characterization and applications of zeolites.
The journal publishes primarily reports of original research and preliminary communications, provided the latter represent a significant advance in the understanding of inclusion science. Critical reviews dealing with recent advances in the field are a periodic feature of the journal.