Experimental study of two side-by-side decaying grid turbulent fields at different mean velocities

IF 1.5 4区 工程技术 Q3 MECHANICS Journal of Turbulence Pub Date : 2023-02-21 DOI:10.1080/14685248.2023.2182439
MD Kamruzzaman, L. Djenidi, R. Antonia
{"title":"Experimental study of two side-by-side decaying grid turbulent fields at different mean velocities","authors":"MD Kamruzzaman, L. Djenidi, R. Antonia","doi":"10.1080/14685248.2023.2182439","DOIUrl":null,"url":null,"abstract":"A Hot-wire anemometry experiment is conducted to investigate how two turbulent fields decaying with different mean velocities interact at their interface. A grid with different mesh sizes and solidities on either side of the grid centerline is used to generate two turbulent fields. It is found that the resulting turbulent shear layer created at the interface of the two fields evolves in a self-preserving manner. Further, the Taylor microscale Reynolds number, increases linearly while and become constants as the distance x downstream of the grids increases. Off the centerline one observes the classical decay of turbulence, e.g. varies like (n is negative) and decreases. It is observed that the transport equation for is dominated by the production and pressure-velocity correlation in the central region of the turbulent shear layer while production, dissipation, and turbulent diffusion of the transport equation for dominate in the central part of the shear layer. The pressure-velocity correlation term for is negligible on the centreline of the shear layer and important on the edges. The measurements of the scale-by-scale (SBS) energy terms on the shear layer centerline reveal that the energy transfer from large to small scales occurs in a non-trivial manner.","PeriodicalId":49967,"journal":{"name":"Journal of Turbulence","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Turbulence","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/14685248.2023.2182439","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

A Hot-wire anemometry experiment is conducted to investigate how two turbulent fields decaying with different mean velocities interact at their interface. A grid with different mesh sizes and solidities on either side of the grid centerline is used to generate two turbulent fields. It is found that the resulting turbulent shear layer created at the interface of the two fields evolves in a self-preserving manner. Further, the Taylor microscale Reynolds number, increases linearly while and become constants as the distance x downstream of the grids increases. Off the centerline one observes the classical decay of turbulence, e.g. varies like (n is negative) and decreases. It is observed that the transport equation for is dominated by the production and pressure-velocity correlation in the central region of the turbulent shear layer while production, dissipation, and turbulent diffusion of the transport equation for dominate in the central part of the shear layer. The pressure-velocity correlation term for is negligible on the centreline of the shear layer and important on the edges. The measurements of the scale-by-scale (SBS) energy terms on the shear layer centerline reveal that the energy transfer from large to small scales occurs in a non-trivial manner.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不同平均速度下两个并排衰减网格湍流场的实验研究
采用热线测速实验研究了两个平均速度不同的湍流场在界面处的相互作用。采用网格中心线两侧不同网格尺寸和固结度的网格来产生两个湍流场。结果发现,在两个场的界面处产生的湍流剪切层以自保存的方式演变。此外,泰勒微尺度雷诺数随栅格下游距离x的增加而线性增加,而随栅格下游距离x的增加而变为常数。在中心线之外,我们观察到经典的湍流衰减,例如像(n为负)那样变化并减小。观察到,输运方程的产生、耗散和湍流扩散主要发生在剪切层中心区域,输运方程的产生、耗散和湍流扩散主要发生在剪切层中心区域。压力-速度相关项在剪切层的中线可以忽略不计,而在边缘则很重要。剪切层中心线上的逐尺度(SBS)能量项的测量表明,从大尺度到小尺度的能量传递是以非平凡的方式发生的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Turbulence
Journal of Turbulence 物理-力学
CiteScore
3.90
自引率
5.30%
发文量
23
审稿时长
6-12 weeks
期刊介绍: Turbulence is a physical phenomenon occurring in most fluid flows, and is a major research topic at the cutting edge of science and technology. Journal of Turbulence ( JoT) is a digital forum for disseminating new theoretical, numerical and experimental knowledge aimed at understanding, predicting and controlling fluid turbulence. JoT provides a common venue for communicating advances of fundamental and applied character across the many disciplines in which turbulence plays a vital role. Examples include turbulence arising in engineering fluid dynamics (aerodynamics and hydrodynamics, particulate and multi-phase flows, acoustics, hydraulics, combustion, aeroelasticity, transitional flows, turbo-machinery, heat transfer), geophysical fluid dynamics (environmental flows, oceanography, meteorology), in physics (magnetohydrodynamics and fusion, astrophysics, cryogenic and quantum fluids), and mathematics (turbulence from PDE’s, model systems). The multimedia capabilities offered by this electronic journal (including free colour images and video movies), provide a unique opportunity for disseminating turbulence research in visually impressive ways.
期刊最新文献
A comparative study of bandpass-filter-based multi-scale methods for turbulence energy cascade On the physical structure, modelling and computation-based prediction of two-dimensional, smooth-wall turbulent boundary layers subjected to streamwise pressure gradients Large-eddy simulation of shock train in convergent-divergent nozzles with isothermal walls Uniform momentum zones in turbulent channel flow Transient energy transfer and cascade analysis for stratified turbulent channel flows
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1