Building Community Consensus for Scientific Metadata with YAMZ

IF 1.3 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Data Intelligence Pub Date : 2023-03-01 DOI:10.1162/dint_a_00211
Jane Greenberg, Scott McClellan, Christopher B. Rauch, Xintong Zhao, Mat Kelly, Yuan An, J. Kunze, Rachel Orenstein, Claire E. Porter, V. Meschke, Eric Toberer
{"title":"Building Community Consensus for Scientific Metadata with YAMZ","authors":"Jane Greenberg, Scott McClellan, Christopher B. Rauch, Xintong Zhao, Mat Kelly, Yuan An, J. Kunze, Rachel Orenstein, Claire E. Porter, V. Meschke, Eric Toberer","doi":"10.1162/dint_a_00211","DOIUrl":null,"url":null,"abstract":"ABSTRACT This paper reports on a demonstration of YAMZ (Yet Another Metadata Zoo) as a mechanism for building community consensus around metadata terms. The demonstration is motivated by the complexity of the metadata standards environment and the need for more user-friendly approaches for researchers to achieve vocabulary consensus. The paper reviews a series of metadata standardization challenges, explores crowdsourcing factors that offer possible solutions, and introduces the YAMZ system. A YAMZ demonstration is presented with members of the Toberer materials science laboratory at the Colorado School of Mines, where there is a need to confirm and maintain a shared understanding for the vocabulary supporting research documentation, data management, and their larger metadata infrastructure. The demonstration involves three key steps: 1) Sampling terms for the demonstration, 2) Engaging graduate student researchers in the demonstration, and 3) Reflecting on the demonstration. The results of these steps, including examples of the dialog provenance among lab members and voting, show the ease with YAMZ can facilitate building metadata vocabulary consensus. The conclusion discusses implications and highlights next steps.","PeriodicalId":34023,"journal":{"name":"Data Intelligence","volume":"5 1","pages":"242-260"},"PeriodicalIF":1.3000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1162/dint_a_00211","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 2

Abstract

ABSTRACT This paper reports on a demonstration of YAMZ (Yet Another Metadata Zoo) as a mechanism for building community consensus around metadata terms. The demonstration is motivated by the complexity of the metadata standards environment and the need for more user-friendly approaches for researchers to achieve vocabulary consensus. The paper reviews a series of metadata standardization challenges, explores crowdsourcing factors that offer possible solutions, and introduces the YAMZ system. A YAMZ demonstration is presented with members of the Toberer materials science laboratory at the Colorado School of Mines, where there is a need to confirm and maintain a shared understanding for the vocabulary supporting research documentation, data management, and their larger metadata infrastructure. The demonstration involves three key steps: 1) Sampling terms for the demonstration, 2) Engaging graduate student researchers in the demonstration, and 3) Reflecting on the demonstration. The results of these steps, including examples of the dialog provenance among lab members and voting, show the ease with YAMZ can facilitate building metadata vocabulary consensus. The conclusion discusses implications and highlights next steps.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用YAMZ构建科学元数据的社区共识
本文报告了YAMZ (Yet Another Metadata Zoo)作为围绕元数据术语建立社区共识的机制的演示。该演示的动机是元数据标准环境的复杂性,以及研究人员需要更多用户友好的方法来实现词汇共识。本文回顾了一系列元数据标准化挑战,探讨了提供可能解决方案的众包因素,并介绍了YAMZ系统。科罗拉多矿业学院的Toberer材料科学实验室的成员演示了YAMZ,在那里需要确认和维护对支持研究文档、数据管理及其更大的元数据基础设施的词汇表的共同理解。演示包括三个关键步骤:1)演示的采样条款,2)让研究生研究人员参与演示,以及3)对演示进行反思。这些步骤的结果,包括实验室成员之间对话来源和投票的示例,表明使用YAMZ可以方便地构建元数据词汇表共识。结论部分讨论了影响并强调了下一步的步骤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Data Intelligence
Data Intelligence COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
6.50
自引率
15.40%
发文量
40
审稿时长
8 weeks
期刊最新文献
The Limitations and Ethical Considerations of ChatGPT Rule Mining Trends from 1987 to 2022: A Bibliometric Analysis and Visualization Classification and quantification of timestamp data quality issues and its impact on data quality outcome BIKAS: Bio-Inspired Knowledge Acquisition and Simulacrum—A Knowledge Database to Support Multifunctional Design Concept Generation Exploring Attentive Siamese LSTM for Low-Resource Text Plagiarism Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1