Biomechanical performance of a bicycle helmet design on a six-year-old head impact protection

Bei Li, Haiyan Li, Shihai Cui, Lijuan He, Shijie Ruan
{"title":"Biomechanical performance of a bicycle helmet design on a six-year-old head impact protection","authors":"Bei Li, Haiyan Li, Shihai Cui, Lijuan He, Shijie Ruan","doi":"10.1504/ijvs.2020.10031696","DOIUrl":null,"url":null,"abstract":"A previously developed and validated 6-year-old (6YO) Finite Element (FE) human head model was used to evaluate the biomechanical performance of a new bicycle helmet design for children. The cushion structure of the new helmet design is made of honeycomb paperboard and corrugated paperboard instead of Expanded Polystyrene (EPS) foam. Simulation results showed that the EPS foam helmet can effectively resist external shocks in a short period. However, based on biomechanical responses of the 6YO head model, honeycomb and corrugated paperboard helmets also had a promising cushioning performance. From the drop test of the head-helmet model simulations, the effects of paperboard thickness and material parameters on the helmet protection efficiency were further investigated. It was concluded that the EPS foam helmet can be replaced with honeycomb/corrugated paperboard helmets which are made of more environmental friendly manufacturing materials.","PeriodicalId":35143,"journal":{"name":"International Journal of Vehicle Safety","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Vehicle Safety","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijvs.2020.10031696","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

A previously developed and validated 6-year-old (6YO) Finite Element (FE) human head model was used to evaluate the biomechanical performance of a new bicycle helmet design for children. The cushion structure of the new helmet design is made of honeycomb paperboard and corrugated paperboard instead of Expanded Polystyrene (EPS) foam. Simulation results showed that the EPS foam helmet can effectively resist external shocks in a short period. However, based on biomechanical responses of the 6YO head model, honeycomb and corrugated paperboard helmets also had a promising cushioning performance. From the drop test of the head-helmet model simulations, the effects of paperboard thickness and material parameters on the helmet protection efficiency were further investigated. It was concluded that the EPS foam helmet can be replaced with honeycomb/corrugated paperboard helmets which are made of more environmental friendly manufacturing materials.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生物力学性能的自行车头盔设计对六岁儿童头部撞击保护
使用先前开发并验证的6岁(6YO)儿童有限元(FE)头部模型来评估新型儿童自行车头盔设计的生物力学性能。新头盔设计的缓冲结构采用蜂窝纸板和瓦楞纸板代替发泡聚苯乙烯(EPS)泡沫。仿真结果表明,EPS泡沫头盔能在短时间内有效抵抗外界冲击。然而,基于6YO头部模型的生物力学响应,蜂窝头盔和瓦楞纸板头盔也具有很好的缓冲性能。通过头盔模型仿真的跌落试验,进一步研究了纸板厚度和材料参数对头盔防护效率的影响。结果表明,EPS泡沫安全帽可被制造材料更为环保的蜂窝/瓦楞纸板安全帽替代。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Vehicle Safety
International Journal of Vehicle Safety Engineering-Automotive Engineering
CiteScore
0.30
自引率
0.00%
发文量
0
期刊介绍: The IJVS aims to provide a refereed and authoritative source of information in the field of vehicle safety design, research, and development. It serves applied scientists, engineers, policy makers and safety advocates with a platform to develop, promote, and coordinate the science, technology and practice of vehicle safety. IJVS also seeks to establish channels of communication between industry and academy, industry and government in the field of vehicle safety. IJVS is published quarterly. It covers the subjects of passive and active safety in road traffic as well as traffic related public health issues, from impact biomechanics to vehicle crashworthiness, and from crash avoidance to intelligent highway systems.
期刊最新文献
Multi-objective optimisation design and fuzzy PID control for racing car variable rear wing system Driving safety of articulated vehicle on a typical interchange Multi-objective optimisation design and fuzzy PID control for racing car variable rear wing system Research on test scenarios of AEB pedestrian system based on knowledge and accident data Relationship between mobile phone addiction and driving accidents in two groups of drivers with and without accidents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1