Bei Li, Haiyan Li, Shihai Cui, Lijuan He, Shijie Ruan
{"title":"Biomechanical performance of a bicycle helmet design on a six-year-old head impact protection","authors":"Bei Li, Haiyan Li, Shihai Cui, Lijuan He, Shijie Ruan","doi":"10.1504/ijvs.2020.10031696","DOIUrl":null,"url":null,"abstract":"A previously developed and validated 6-year-old (6YO) Finite Element (FE) human head model was used to evaluate the biomechanical performance of a new bicycle helmet design for children. The cushion structure of the new helmet design is made of honeycomb paperboard and corrugated paperboard instead of Expanded Polystyrene (EPS) foam. Simulation results showed that the EPS foam helmet can effectively resist external shocks in a short period. However, based on biomechanical responses of the 6YO head model, honeycomb and corrugated paperboard helmets also had a promising cushioning performance. From the drop test of the head-helmet model simulations, the effects of paperboard thickness and material parameters on the helmet protection efficiency were further investigated. It was concluded that the EPS foam helmet can be replaced with honeycomb/corrugated paperboard helmets which are made of more environmental friendly manufacturing materials.","PeriodicalId":35143,"journal":{"name":"International Journal of Vehicle Safety","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Vehicle Safety","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijvs.2020.10031696","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
A previously developed and validated 6-year-old (6YO) Finite Element (FE) human head model was used to evaluate the biomechanical performance of a new bicycle helmet design for children. The cushion structure of the new helmet design is made of honeycomb paperboard and corrugated paperboard instead of Expanded Polystyrene (EPS) foam. Simulation results showed that the EPS foam helmet can effectively resist external shocks in a short period. However, based on biomechanical responses of the 6YO head model, honeycomb and corrugated paperboard helmets also had a promising cushioning performance. From the drop test of the head-helmet model simulations, the effects of paperboard thickness and material parameters on the helmet protection efficiency were further investigated. It was concluded that the EPS foam helmet can be replaced with honeycomb/corrugated paperboard helmets which are made of more environmental friendly manufacturing materials.
期刊介绍:
The IJVS aims to provide a refereed and authoritative source of information in the field of vehicle safety design, research, and development. It serves applied scientists, engineers, policy makers and safety advocates with a platform to develop, promote, and coordinate the science, technology and practice of vehicle safety. IJVS also seeks to establish channels of communication between industry and academy, industry and government in the field of vehicle safety. IJVS is published quarterly. It covers the subjects of passive and active safety in road traffic as well as traffic related public health issues, from impact biomechanics to vehicle crashworthiness, and from crash avoidance to intelligent highway systems.