Effect of Rhizoglomus fasciculatum and Paecilomyces lilacinus in the biocontrol of root-knot nematode, Meloidogyne incognita in Capsicum annuum L

Q2 Agricultural and Biological Sciences Communicative and Integrative Biology Pub Date : 2022-03-07 DOI:10.1080/19420889.2021.2025195
Bhoopander Giri, R. Rawat, G. Saxena, Preet Manchanda, Qiangsheng Wu, Anuradha Sharma
{"title":"Effect of Rhizoglomus fasciculatum and Paecilomyces lilacinus in the biocontrol of root-knot nematode, Meloidogyne incognita in Capsicum annuum L","authors":"Bhoopander Giri, R. Rawat, G. Saxena, Preet Manchanda, Qiangsheng Wu, Anuradha Sharma","doi":"10.1080/19420889.2021.2025195","DOIUrl":null,"url":null,"abstract":"ABSTRACT Root-knot nematodes possess a major threat to agricultural production of various crops worldwide. The intensive use of chemical nematicides to control plant parasitic nematodes has adverse effects on our environment and human health. Owing to the importance of developing new strategies, an experiment was conducted to reveal the influence of arbuscular mycorrhizal fungus, Rhizoglomus fasciculatum and nematophagous fungus, Paecilomyces lilacinus alone or in combination with various organic amendments such as superphosphate, green and organic manure to control the infection of root-knot, nematode Meloidogyne incognita in a vegetable crop Capsicum annuum. These two fungi along with soil amendments significantly improved plant growth and fruit yield and effectively controlled infection of M. incognita. The dual inoculation of P. lilacinus and R. fasciculatum reduced the number of galls and egg masses, thereby revealing the controlled proliferation of M. incognita infection in C. annuum roots. The beneficial effect of these fungi further increased on supplementation of soil with organic or green manures. Inoculation of C. annuum with these two fungi showed a significant increase in egg parasitization; however, maximum effect was detected on dual inoculation. Amongst the soil amendments, the best response was obtained in case of green manure along with mycorrhizal fungus and P. lilacinus. Present study revealed that nematophagous and AM fungi, in combination with green manure were effective in controlling M. incognita, thus suggesting the use of such agents for biocontrol of plant parasitic nematodes in agriculture.","PeriodicalId":39647,"journal":{"name":"Communicative and Integrative Biology","volume":"15 1","pages":"75 - 87"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communicative and Integrative Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19420889.2021.2025195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 4

Abstract

ABSTRACT Root-knot nematodes possess a major threat to agricultural production of various crops worldwide. The intensive use of chemical nematicides to control plant parasitic nematodes has adverse effects on our environment and human health. Owing to the importance of developing new strategies, an experiment was conducted to reveal the influence of arbuscular mycorrhizal fungus, Rhizoglomus fasciculatum and nematophagous fungus, Paecilomyces lilacinus alone or in combination with various organic amendments such as superphosphate, green and organic manure to control the infection of root-knot, nematode Meloidogyne incognita in a vegetable crop Capsicum annuum. These two fungi along with soil amendments significantly improved plant growth and fruit yield and effectively controlled infection of M. incognita. The dual inoculation of P. lilacinus and R. fasciculatum reduced the number of galls and egg masses, thereby revealing the controlled proliferation of M. incognita infection in C. annuum roots. The beneficial effect of these fungi further increased on supplementation of soil with organic or green manures. Inoculation of C. annuum with these two fungi showed a significant increase in egg parasitization; however, maximum effect was detected on dual inoculation. Amongst the soil amendments, the best response was obtained in case of green manure along with mycorrhizal fungus and P. lilacinus. Present study revealed that nematophagous and AM fungi, in combination with green manure were effective in controlling M. incognita, thus suggesting the use of such agents for biocontrol of plant parasitic nematodes in agriculture.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
束状根球菌和淡紫色拟青霉对辣椒根结线虫的生物防治作用
根结线虫对世界范围内各种作物的农业生产构成重大威胁。大量使用化学杀线虫剂防治植物寄生线虫对环境和人类健康造成了不利影响。本试验研究了丛枝菌根真菌、束状根霉和食线虫真菌、淡紫色拟青霉单独施用或与各种有机肥(如过磷酸钙、绿肥和有机肥)联合施用对蔬菜作物辣椒根结线虫的防治效果。这两种真菌配合土壤改良剂能显著促进植物生长和果实产量,并能有效地控制黑穗病的侵染。双接种紫丁香和束状霉可以减少虫瘿和虫卵的数量,从而揭示了黑衣霉感染在金针菇根中的增殖受到控制。在土壤中添加有机肥或绿肥时,这些真菌的有益作用进一步增强。接种这两种真菌后,其虫卵寄生率显著提高;而双接种效果最大。在土壤改良剂中,绿肥与菌根真菌和紫丁香混施效果最好。本研究表明,食线虫菌和AM菌与绿肥联合施用对植物寄生线虫有较好的防治效果,可作为农业植物寄生线虫的生物防治手段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Communicative and Integrative Biology
Communicative and Integrative Biology Agricultural and Biological Sciences-Agricultural and Biological Sciences (all)
CiteScore
3.50
自引率
0.00%
发文量
22
审稿时长
6 weeks
期刊最新文献
Extract from endophytic Fusarium isolates stimulates seed germination of the host and protocorm development of non-host orchids. Quorum sensing and antibiotic resistance in polymicrobial infections. Synergistic effect of nano-potassium and chitosan as stimulants inducing growth and yield of bird of paradise (Sterlitiza reginae L.) in newly lands. Hypersensitivity to man-made electromagnetic fields (EHS) correlates with immune responsivity to oxidative stress: a case report. Emergence of information processing in biological systems and the origin of life.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1