Expanding NAEP and TIMSS Analysis to Include Additional Variables or a New Scoring Model Using the R Package Dire

Psych Pub Date : 2023-08-17 DOI:10.3390/psych5030058
P. Bailey, B. Webb
{"title":"Expanding NAEP and TIMSS Analysis to Include Additional Variables or a New Scoring Model Using the R Package Dire","authors":"P. Bailey, B. Webb","doi":"10.3390/psych5030058","DOIUrl":null,"url":null,"abstract":"The R packages Dire and EdSurvey allow analysts to make a conditioning model with new variables and then draw new plausible values. This is important because results for a variable not in the conditioning model are biased. For regression-type analyses, users can also use direct estimation to estimate parameters without generating new plausible values. Dire is distinct from other available software in R in that it requires fixed item parameters and simplifies calculation of high-dimensional integrals necessary to calculate composite or subscales. When used with EdSurvey, it is very easy to use published item parameters to estimate a new conditioning model. We show the theory behind the methods in Dire and a coding example where we perform an analysis that includes simple process data variables. Because the process data is not used in the conditioning model, the estimator is biased if a new conditioning model is not added with Dire.","PeriodicalId":93139,"journal":{"name":"Psych","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psych","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/psych5030058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The R packages Dire and EdSurvey allow analysts to make a conditioning model with new variables and then draw new plausible values. This is important because results for a variable not in the conditioning model are biased. For regression-type analyses, users can also use direct estimation to estimate parameters without generating new plausible values. Dire is distinct from other available software in R in that it requires fixed item parameters and simplifies calculation of high-dimensional integrals necessary to calculate composite or subscales. When used with EdSurvey, it is very easy to use published item parameters to estimate a new conditioning model. We show the theory behind the methods in Dire and a coding example where we perform an analysis that includes simple process data variables. Because the process data is not used in the conditioning model, the estimator is biased if a new conditioning model is not added with Dire.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
扩展NAEP和TIMSS分析,以包括额外的变量或使用R软件包的新评分模型
R软件包Dire和EdSurvey允许分析人员用新变量建立条件反射模型,然后绘制新的可信值。这一点很重要,因为条件作用模型之外的变量的结果是有偏差的。对于回归型分析,用户也可以使用直接估计来估计参数,而不产生新的似是而非的值。与R中其他可用的软件不同,它需要固定的项目参数,并简化了计算复合或子尺度所需的高维积分的计算。当与EdSurvey一起使用时,很容易使用发布的项目参数来估计新的条件模型。我们展示了在Dire中方法背后的理论和一个编码示例,其中我们执行了一个包含简单流程数据变量的分析。因为在调节模型中没有使用过程数据,如果新的调节模型没有添加Dire,则估计器是有偏差的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Robust Indicator Mean-Based Method for Estimating Generalizability Theory Absolute Error and Related Dependability Indices within Structural Equation Modeling Frameworks Qualitative Pilot Interventions for the Enhancement of Mental Health Support in Doctoral Students Walking Forward Together—The Next Step: Indigenous Youth Mental Health and the Climate Crisis Walking Forward Together—The Next Step: Indigenous Youth Mental Health and the Climate Crisis The IADC Grief Questionnaire as a Brief Measure for Complicated Grief in Clinical Practice and Research: A Preliminary Study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1