{"title":"Effect of Glutathione Enriched Polyherbal Formulation on Streptozotocin Induced Diabetic Model by Regulating Oxidative Stress and PKC Pathway","authors":"Sheethal S, R. M, Svenia P. Jose, S. S","doi":"10.5530/pres.15.2.037","DOIUrl":null,"url":null,"abstract":"Background: Increasing evidence shows that oxidative stress is one of the root causes of metabolic disorders like diabetes. Glucose oxidation and activation of various metabolic pathways lead to a disproportionate generation of free radicals. This will significantly reduce the antioxidant status in the body. Objectives: In the present study, we aimed to evaluate the effect of a novel glutathione enriched polyherbal formulation on a streptozotocin induced diabetic model. Materials and Methods: Diabetes was induced by a single intraperitoneal injection of streptozotocin. After 3 days of injection, Glibenclamide (5mg/kg), and glutathione enriched polyherbal formulation were given orally for 28 days. Fasting blood glucose and body weight changes were measured at specific intervals. For the study, antioxidant enzymes, lipid peroxidation products, nitrite, liver enzyme markers, gene expression of GLUT–2, and PKC levels were evaluated. Histopathological analysis was also done. Results: The result shows that glutathione enriched polyherbal formulation treated rats significantly reduced their blood glucose and maintained their body weight. As a result, the GLUT–2 expression was reduced, which prevented the activation of PKC. Moreover, oxidative stress was reduced by improving antioxidants like SOD, CAT, GPx, and GSH by inhibiting the lipid peroxidation process. In addition, hepatic damage was also prevented by protecting the liver cells, and thereby shielding the excessive leakage of SGOT, SGPT, and ALP enzymes. The histopathological analysis of the liver gives more support to other data. Conclusion: Findings show that glutathione–enriched polyherbal formulations have a powerful anti-diabetic effect by inhibiting oxidative stress and thus blocking PKC activation.","PeriodicalId":19813,"journal":{"name":"Pharmacognosy Research","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacognosy Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5530/pres.15.2.037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Increasing evidence shows that oxidative stress is one of the root causes of metabolic disorders like diabetes. Glucose oxidation and activation of various metabolic pathways lead to a disproportionate generation of free radicals. This will significantly reduce the antioxidant status in the body. Objectives: In the present study, we aimed to evaluate the effect of a novel glutathione enriched polyherbal formulation on a streptozotocin induced diabetic model. Materials and Methods: Diabetes was induced by a single intraperitoneal injection of streptozotocin. After 3 days of injection, Glibenclamide (5mg/kg), and glutathione enriched polyherbal formulation were given orally for 28 days. Fasting blood glucose and body weight changes were measured at specific intervals. For the study, antioxidant enzymes, lipid peroxidation products, nitrite, liver enzyme markers, gene expression of GLUT–2, and PKC levels were evaluated. Histopathological analysis was also done. Results: The result shows that glutathione enriched polyherbal formulation treated rats significantly reduced their blood glucose and maintained their body weight. As a result, the GLUT–2 expression was reduced, which prevented the activation of PKC. Moreover, oxidative stress was reduced by improving antioxidants like SOD, CAT, GPx, and GSH by inhibiting the lipid peroxidation process. In addition, hepatic damage was also prevented by protecting the liver cells, and thereby shielding the excessive leakage of SGOT, SGPT, and ALP enzymes. The histopathological analysis of the liver gives more support to other data. Conclusion: Findings show that glutathione–enriched polyherbal formulations have a powerful anti-diabetic effect by inhibiting oxidative stress and thus blocking PKC activation.
期刊介绍:
Pharmacognosy Research [ISSN: Print -0976-4836, Online - 0974-8490] [http://www.phcogres.com], Quarterly a publication of Phcog.Net is published by Wolters Kluwer - Medknow Publications. It provides peer-reviewed original research articles from the field of Natural Products. The journal serves an international audience of scientists and researchers in a variety of research and academia by quickly disseminating research findings related to Medicinal Plants and Natural Products. It is a peer reviewed journal aiming to publish high quality original research articles, methods, techniques and evaluation reports, critical reviews, short communications, commentaries and editorials of all aspects of medicinal plant research. The journal is aimed at a broad readership, publishing articles on all aspects of pharmacognosy, and related fields. The journal aims to increase understanding of pharmacognosy as well as to direct and foster further research through the dissemination of scientific information by the publication of manuscripts. The submissions of original contributions in all areas of pharmacognosy are welcome.