Ali Nasr, Jason Hunter, Clark R Dickerson, John McPhee
{"title":"Evaluation of a machine-learning-driven active-passive upper-limb exoskeleton robot: Experimental human-in-the-loop study.","authors":"Ali Nasr, Jason Hunter, Clark R Dickerson, John McPhee","doi":"10.1017/wtc.2023.9","DOIUrl":null,"url":null,"abstract":"<p><p>Evaluating exoskeleton actuation methods and designing an effective controller for these exoskeletons are both challenging and time-consuming tasks. This is largely due to the complicated human-robot interactions, the selection of sensors and actuators, electrical/command connection issues, and communication delays. In this research, a test framework for evaluating a new active-passive shoulder exoskeleton was developed, and a surface electromyography (sEMG)-based human-robot cooperative control method was created to execute the wearer's movement intentions. The hierarchical control used sEMG-based intention estimation, mid-level strength regulation, and low-level actuator control. It was then applied to shoulder joint elevation experiments to verify the exoskeleton controller's effectiveness. The active-passive assistance was compared with fully passive and fully active exoskeleton control using the following criteria: (1) post-test survey, (2) load tolerance duration, and (3) computed human torque, power, and metabolic energy expenditure using sEMG signals and inverse dynamic simulation. The experimental outcomes showed that active-passive exoskeletons required less muscular activation torque (50%) from the user and reduced fatigue duration indicators by a factor of 3, compared to fully passive ones.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":" ","pages":"e13"},"PeriodicalIF":4.7000,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10936398/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/wtc.2023.9","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Evaluating exoskeleton actuation methods and designing an effective controller for these exoskeletons are both challenging and time-consuming tasks. This is largely due to the complicated human-robot interactions, the selection of sensors and actuators, electrical/command connection issues, and communication delays. In this research, a test framework for evaluating a new active-passive shoulder exoskeleton was developed, and a surface electromyography (sEMG)-based human-robot cooperative control method was created to execute the wearer's movement intentions. The hierarchical control used sEMG-based intention estimation, mid-level strength regulation, and low-level actuator control. It was then applied to shoulder joint elevation experiments to verify the exoskeleton controller's effectiveness. The active-passive assistance was compared with fully passive and fully active exoskeleton control using the following criteria: (1) post-test survey, (2) load tolerance duration, and (3) computed human torque, power, and metabolic energy expenditure using sEMG signals and inverse dynamic simulation. The experimental outcomes showed that active-passive exoskeletons required less muscular activation torque (50%) from the user and reduced fatigue duration indicators by a factor of 3, compared to fully passive ones.
期刊介绍:
ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric.
Indexed/Abstracted:
Web of Science SCIE
Scopus
CAS
INSPEC
Portico