Biomedical Named Entity Recognition via Knowledge Guidance and Question Answering

Pratyay Banerjee, Kuntal Kumar Pal, M. Devarakonda, Chitta Baral
{"title":"Biomedical Named Entity Recognition via Knowledge Guidance and Question Answering","authors":"Pratyay Banerjee, Kuntal Kumar Pal, M. Devarakonda, Chitta Baral","doi":"10.1145/3465221","DOIUrl":null,"url":null,"abstract":"In this work, we formulated the named entity recognition (NER) task as a multi-answer knowledge guided question-answer task (KGQA) and showed that the knowledge guidance helps to achieve state-of-the-art results for 11 of 18 biomedical NER datasets. We prepended five different knowledge contexts—entity types, questions, definitions, and examples—to the input text and trained and tested BERT-based neural models on such input sequences from a combined dataset of the 18 different datasets. This novel formulation of the task (a) improved named entity recognition and illustrated the impact of different knowledge contexts, (b) reduced system confusion by limiting prediction to a single entity-class for each input token (i.e., B, I, O only) compared to multiple entity-classes in traditional NER (i.e., Bentity1, Bentity2, Ientity1, I, O), (c) made detection of nested entities easier, and (d) enabled the models to jointly learn NER-specific features from a large number of datasets. We performed extensive experiments of this KGQA formulation on the biomedical datasets, and through the experiments, we showed when knowledge improved named entity recognition. We analyzed the effect of the task formulation, the impact of the different knowledge contexts, the multi-task aspect of the generic format, and the generalization ability of KGQA. We also probed the model to better understand the key contributors for these improvements.","PeriodicalId":72043,"journal":{"name":"ACM transactions on computing for healthcare","volume":" ","pages":"1 - 24"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1145/3465221","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM transactions on computing for healthcare","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3465221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

In this work, we formulated the named entity recognition (NER) task as a multi-answer knowledge guided question-answer task (KGQA) and showed that the knowledge guidance helps to achieve state-of-the-art results for 11 of 18 biomedical NER datasets. We prepended five different knowledge contexts—entity types, questions, definitions, and examples—to the input text and trained and tested BERT-based neural models on such input sequences from a combined dataset of the 18 different datasets. This novel formulation of the task (a) improved named entity recognition and illustrated the impact of different knowledge contexts, (b) reduced system confusion by limiting prediction to a single entity-class for each input token (i.e., B, I, O only) compared to multiple entity-classes in traditional NER (i.e., Bentity1, Bentity2, Ientity1, I, O), (c) made detection of nested entities easier, and (d) enabled the models to jointly learn NER-specific features from a large number of datasets. We performed extensive experiments of this KGQA formulation on the biomedical datasets, and through the experiments, we showed when knowledge improved named entity recognition. We analyzed the effect of the task formulation, the impact of the different knowledge contexts, the multi-task aspect of the generic format, and the generalization ability of KGQA. We also probed the model to better understand the key contributors for these improvements.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于知识引导和问答的生物医学命名实体识别
在这项工作中,我们将命名实体识别(NER)任务制定为多答案知识引导问答任务(KGQA),并表明知识引导有助于18个生物医学NER数据集中的11个获得最先进的结果。我们为输入文本准备了五种不同的知识上下文——实体类型、问题、定义和示例,并在来自18个不同数据集的组合数据集的输入序列上训练和测试了基于bert的神经模型。这种任务的新公式(a)改进了命名实体识别,并说明了不同知识上下文的影响;(b)通过将每个输入标记的预测限制为单个实体类(即,b, I, O),而不是传统NER中的多个实体类(即,Bentity1, Bentity2, Ientity1, I, O),减少了系统混淆;(c)使嵌套实体的检测更容易;(d)使模型能够从大量数据集中共同学习NER特定的特征。我们在生物医学数据集上对这个KGQA公式进行了大量的实验,通过实验,我们展示了知识在什么时候提高了命名实体的识别。我们分析了任务制定的影响、不同知识背景的影响、通用格式的多任务方面的影响以及KGQA的泛化能力。我们还研究了该模型,以便更好地理解这些改进的关键贡献者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.30
自引率
0.00%
发文量
0
期刊最新文献
A method for comparing time series by untangling time-dependent and independent variations in biological processes AI-assisted Diagnosing, Monitoring, and Treatment of Mental Disorders: A Survey HEalthRecordBERT (HERBERT): leveraging transformers on electronic health records for chronic kidney disease risk stratification iScan: Detection of Colorectal Cancer From CT Scan Images Using Deep Learning A Computation Model to Estimate Interaction Intensity through Non-verbal Behavioral Cues: A Case Study of Intimate Couples under the Impact of Acute Alcohol Consumption
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1