Molecular and Biochemical Characterization of nifHDK Genes in Klebsiella pneumoniae

Q4 Agricultural and Biological Sciences International Journal Bioautomation Pub Date : 2021-06-30 DOI:10.7546/ijba.2021.25.2.000721
F. A. Al-Saffar, M. Al-Khayyat
{"title":"Molecular and Biochemical Characterization of nifHDK Genes in Klebsiella pneumoniae","authors":"F. A. Al-Saffar, M. Al-Khayyat","doi":"10.7546/ijba.2021.25.2.000721","DOIUrl":null,"url":null,"abstract":"Nitrogen fixation is carried by an enzyme complex called nitrogenase which consists of two main components, a dinitrogenase that is encoded by nifD and nifK and an iron containing reductase, also called Fe protein which is encoded by nifH. Nitrogen-free medium was used to detect the ability of nitrogen fixation by Klebsiella pneumonia, then DNA was extracted and overlap extension polymerase chain reaction of nifH, nifD and nifK. To obtain nucleotide sequences of these genes, sequencing of the PCR products was one. The reverse sequence of nifH and the forward sequences of nifD and nifK were converted into amino acids using online translation tool. Homology modeling was carried out using SWISS-MODEL. The modeled amino acids sequences was validated using ERRAT and PROCHECK. The modeled sequences were reliable and of quality higher than 90%. The two subunits of Fe protein were constructed and tertiary structure was predicted together with the binding sites for prosthetic group and ADP molecule in Fe protein. The following amino acids Asp11, Lys13, Asn157, Ser158, Val183, Pro184, Arg185, Asp186, Val189, Gln190 and Glu193 seem to participate in the ADP binding. The complexity of this enzyme makes it difficult to be cloned in plants.","PeriodicalId":38867,"journal":{"name":"International Journal Bioautomation","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal Bioautomation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/ijba.2021.25.2.000721","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Nitrogen fixation is carried by an enzyme complex called nitrogenase which consists of two main components, a dinitrogenase that is encoded by nifD and nifK and an iron containing reductase, also called Fe protein which is encoded by nifH. Nitrogen-free medium was used to detect the ability of nitrogen fixation by Klebsiella pneumonia, then DNA was extracted and overlap extension polymerase chain reaction of nifH, nifD and nifK. To obtain nucleotide sequences of these genes, sequencing of the PCR products was one. The reverse sequence of nifH and the forward sequences of nifD and nifK were converted into amino acids using online translation tool. Homology modeling was carried out using SWISS-MODEL. The modeled amino acids sequences was validated using ERRAT and PROCHECK. The modeled sequences were reliable and of quality higher than 90%. The two subunits of Fe protein were constructed and tertiary structure was predicted together with the binding sites for prosthetic group and ADP molecule in Fe protein. The following amino acids Asp11, Lys13, Asn157, Ser158, Val183, Pro184, Arg185, Asp186, Val189, Gln190 and Glu193 seem to participate in the ADP binding. The complexity of this enzyme makes it difficult to be cloned in plants.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
肺炎克雷伯菌nifHDK基因的分子生物学特性
固氮是由一种名为固氮酶的酶复合物进行的,该酶复合物由两种主要成分组成,一种是由nifD和nifK编码的二氮酶,另一种是含铁还原酶,也称为铁蛋白,由nifH编码。采用无氮培养基检测肺炎克雷伯菌的固氮能力,提取DNA,并进行nifH、nifD和nifK的重叠延伸聚合酶链反应。为了获得这些基因的核苷酸序列,PCR产物的测序是其中之一。使用在线翻译工具将nifH的反向序列以及nifD和nifK的正向序列转换为氨基酸。使用SWISS-MODEL进行同源性建模。使用ERRAT和PROCHECK对模拟的氨基酸序列进行了验证。所建模的序列是可靠的,并且质量高于90%。构建了铁蛋白的两个亚基,并预测了铁蛋白中修复基和ADP分子的结合位点的三级结构。以下氨基酸Asp11、Lys13、Asn157、Ser158、Val183、Pro184、Arg185、Asp186、Val189、Gln190和Glu193似乎参与ADP结合。这种酶的复杂性使得它很难在植物中克隆。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal Bioautomation
International Journal Bioautomation Agricultural and Biological Sciences-Food Science
CiteScore
1.10
自引率
0.00%
发文量
22
审稿时长
12 weeks
期刊最新文献
Differential Effect of Novel Plant Cystatins on the Adhesive Behaviour of Normal and Cancer Breast Cells Genome Wide Identification, Characterization and Evolutionary Analysis of T6SS in Burkholderia cenocepacia Strains Dynamic Model Inference of Gene Regulatory Network based on Hybrid Parallel Genetic Algorithm and Threshold Qualification Method Effect of Graphene Oxide and Ammonia-modified Graphene Oxide Particles on ATPase Activity of Rat Liver Mitochondria The Ecological Role of Probiotics in in vitro Culture for the Improvement of Health in the Poultry Industry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1