{"title":"Flow modelling to quantify structural control on CO2 migration and containment, CCS South West Hub, Australia","authors":"L. Langhi, J. Strand, L. Ricard","doi":"10.1144/petgeo2020-094","DOIUrl":null,"url":null,"abstract":"In order to reduce uncertainties around CO2 containment for the South West Hub CCS site (Western Australia), conceptual fault hydrodynamic models were defined and numerical simulations were carried out. These simulations model worst-case scenarios with a plume reaching a main compartment-bounding fault near the proposed injection depth and at the faulted interface between the primary and secondary containment interval. The conceptual models incorporate host-rock and fault properties accounting for fault-zone lithology, cementation and cataclastic processes but with no account made for geomechanical processes as the risk of reactivation is perceived as low. Flow simulations were performed to assess cross-fault and upfault migration in the case of plume–faults interaction. Results near the injection depth suggest that the main faults are likely to experience a significant reduction in transmissivity and impede CO2 flow. This could promote the migration of CO2 vertically or along the stratigraphic dip. Results near the interface between the primary and secondary containment intervals show that none of the main faults would critically control CO2 flow nor would they act as primary leakage pathways. CO2 flow is predicted to be primarily controlled by the sedimentological morphology. The presence of baffles in the secondary containment interval is expected to be associated with local CO2 accumulations; additional permeability impacts introduced by faults are minor. Thematic collection: This article is part of the Geoscience for CO2 storage collection available at: https://www.lyellcollection.org/cc/geoscience-for-co2-storage","PeriodicalId":49704,"journal":{"name":"Petroleum Geoscience","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2021-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Geoscience","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1144/petgeo2020-094","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 5
Abstract
In order to reduce uncertainties around CO2 containment for the South West Hub CCS site (Western Australia), conceptual fault hydrodynamic models were defined and numerical simulations were carried out. These simulations model worst-case scenarios with a plume reaching a main compartment-bounding fault near the proposed injection depth and at the faulted interface between the primary and secondary containment interval. The conceptual models incorporate host-rock and fault properties accounting for fault-zone lithology, cementation and cataclastic processes but with no account made for geomechanical processes as the risk of reactivation is perceived as low. Flow simulations were performed to assess cross-fault and upfault migration in the case of plume–faults interaction. Results near the injection depth suggest that the main faults are likely to experience a significant reduction in transmissivity and impede CO2 flow. This could promote the migration of CO2 vertically or along the stratigraphic dip. Results near the interface between the primary and secondary containment intervals show that none of the main faults would critically control CO2 flow nor would they act as primary leakage pathways. CO2 flow is predicted to be primarily controlled by the sedimentological morphology. The presence of baffles in the secondary containment interval is expected to be associated with local CO2 accumulations; additional permeability impacts introduced by faults are minor. Thematic collection: This article is part of the Geoscience for CO2 storage collection available at: https://www.lyellcollection.org/cc/geoscience-for-co2-storage
期刊介绍:
Petroleum Geoscience is the international journal of geoenergy and applied earth science, and is co-owned by the Geological Society of London and the European Association of Geoscientists and Engineers (EAGE).
Petroleum Geoscience transcends disciplinary boundaries and publishes a balanced mix of articles covering exploration, exploitation, appraisal, development and enhancement of sub-surface hydrocarbon resources and carbon repositories. The integration of disciplines in an applied context, whether for fluid production, carbon storage or related geoenergy applications, is a particular strength of the journal. Articles on enhancing exploration efficiency, lowering technological and environmental risk, and improving hydrocarbon recovery communicate the latest developments in sub-surface geoscience to a wide readership.
Petroleum Geoscience provides a multidisciplinary forum for those engaged in the science and technology of the rock-related sub-surface disciplines. The journal reaches some 8000 individual subscribers, and a further 1100 institutional subscriptions provide global access to readers including geologists, geophysicists, petroleum and reservoir engineers, petrophysicists and geochemists in both academia and industry. The journal aims to share knowledge of reservoir geoscience and to reflect the international nature of its development.