Maximum negative entropy deconvolution and its application to bearing condition monitoring

IF 5.7 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY Structural Health Monitoring-An International Journal Pub Date : 2023-07-14 DOI:10.1177/14759217231181679
Zewen Zhou, Bingyan Chen, B. Huang, Weihua Zhang, F. Gu, A. Ball, Xue Gong
{"title":"Maximum negative entropy deconvolution and its application to bearing condition monitoring","authors":"Zewen Zhou, Bingyan Chen, B. Huang, Weihua Zhang, F. Gu, A. Ball, Xue Gong","doi":"10.1177/14759217231181679","DOIUrl":null,"url":null,"abstract":"Blind deconvolution (BD) has proven to be an effective approach to detecting repetitive transients caused by bearing faults. However, BD suffers from instability issues including excessive sensitivity of kurtosis-guided BD methods to the single impulse and high computational time cost of the eigenvector algorithm-aided BD methods. To address these critical issues, this paper proposed a novel BD method maximizing negative entropy (NE), shortened as maximum negative entropy deconvolution (MNED). MNED utilizes NE instead of kurtosis as the optimization metric and optimizes the filter coefficients through the objective function method. The effectiveness of MNED in enhancing repetitive transients is illustrated through a simulation case and two experimental cases. A quantitative comparison with three existing BD methods demonstrates the advantages of MNED in fault detection and computational efficiency. In addition, the performance of the four methods under different filter lengths and external shocks is compared. MNED exhibits lower sensitivity to random impulse noise than the kurtosis-guided BD methods and higher computational efficiency than the BD methods based on the eigenvalue algorithm. The simulation and experimental results demonstrate that MNED is a robust and cost-effective method for bearing fault diagnosis and condition monitoring.","PeriodicalId":51184,"journal":{"name":"Structural Health Monitoring-An International Journal","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2023-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Health Monitoring-An International Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/14759217231181679","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Blind deconvolution (BD) has proven to be an effective approach to detecting repetitive transients caused by bearing faults. However, BD suffers from instability issues including excessive sensitivity of kurtosis-guided BD methods to the single impulse and high computational time cost of the eigenvector algorithm-aided BD methods. To address these critical issues, this paper proposed a novel BD method maximizing negative entropy (NE), shortened as maximum negative entropy deconvolution (MNED). MNED utilizes NE instead of kurtosis as the optimization metric and optimizes the filter coefficients through the objective function method. The effectiveness of MNED in enhancing repetitive transients is illustrated through a simulation case and two experimental cases. A quantitative comparison with three existing BD methods demonstrates the advantages of MNED in fault detection and computational efficiency. In addition, the performance of the four methods under different filter lengths and external shocks is compared. MNED exhibits lower sensitivity to random impulse noise than the kurtosis-guided BD methods and higher computational efficiency than the BD methods based on the eigenvalue algorithm. The simulation and experimental results demonstrate that MNED is a robust and cost-effective method for bearing fault diagnosis and condition monitoring.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
最大负熵反褶积及其在轴承状态监测中的应用
盲反褶积(BD)已被证明是检测轴承故障引起的重复瞬态的有效方法。然而,BD存在不稳定性问题,包括峰度引导的BD方法对单脉冲的过度敏感以及特征向量算法辅助的BD方法的高计算时间成本。为了解决这些关键问题,本文提出了一种新的BD方法——最大负熵(NE),简称为最大负熵反褶积(MNED)。MNED利用NE而不是峰度作为优化度量,并通过目标函数法对滤波器系数进行优化。通过一个模拟案例和两个实验案例说明了MNED在增强重复瞬态方面的有效性。与三种现有BD方法的定量比较表明了MNED在故障检测和计算效率方面的优势。此外,还比较了四种方法在不同滤波器长度和外部冲击下的性能。MNED比峰度引导的BD方法对随机脉冲噪声的敏感性更低,并且比基于特征值算法的BD方法具有更高的计算效率。仿真和实验结果表明,MNED是一种稳健、经济高效的轴承故障诊断和状态监测方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
12.80
自引率
12.10%
发文量
181
审稿时长
4.8 months
期刊介绍: Structural Health Monitoring is an international peer reviewed journal that publishes the highest quality original research that contain theoretical, analytical, and experimental investigations that advance the body of knowledge and its application in the discipline of structural health monitoring.
期刊最新文献
Deep learning-based obstacle-avoiding autonomous UAVs with fiducial marker-based localization for structural health monitoring. Deep learning-based concrete defects classification and detection using semantic segmentation. Combination of active sensing method and data-driven approach for rubber aging detection Distributed fiber optic strain sensing for crack detection with Brillouin shift spectrum back analysis An unsupervised transfer learning approach for rolling bearing fault diagnosis based on dual pseudo-label screening
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1