Benedict A. H. Jones;John L. P. Chouard;Bianca C. C. Branco;Eléonore G. B. Vissol-Gaudin;Christopher Pearson;Michael C. Petty;Noura Al Moubayed;Dagou A. Zeze;Chris Groves
{"title":"Towards Intelligently Designed Evolvable Processors","authors":"Benedict A. H. Jones;John L. P. Chouard;Bianca C. C. Branco;Eléonore G. B. Vissol-Gaudin;Christopher Pearson;Michael C. Petty;Noura Al Moubayed;Dagou A. Zeze;Chris Groves","doi":"10.1162/evco_a_00309","DOIUrl":null,"url":null,"abstract":"Evolution-in-Materio is a computational paradigm in which an algorithm reconfigures a material's properties to achieve a specific computational function. This article addresses the question of how successful and well performing Evolution-in-Materio processors can be designed through the selection of nanomaterials and an evolutionary algorithm for a target application. A physical model of a nanomaterial network is developed which allows for both randomness, and the possibility of Ohmic and non-Ohmic conduction, that are characteristic of such materials. These differing networks are then exploited by differential evolution, which optimises several configuration parameters (e.g., configuration voltages, weights, etc.), to solve different classification problems. We show that ideal nanomaterial choice depends upon problem complexity, with more complex problems being favoured by complex voltage dependence of conductivity and vice versa. Furthermore, we highlight how intrinsic nanomaterial electrical properties can be exploited by differing configuration parameters, clarifying the role and limitations of these techniques. These findings provide guidance for the rational design of nanomaterials and algorithms for future Evolution-in-Materio processors.","PeriodicalId":50470,"journal":{"name":"Evolutionary Computation","volume":"30 4","pages":"479-501"},"PeriodicalIF":4.6000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10301990/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Evolution-in-Materio is a computational paradigm in which an algorithm reconfigures a material's properties to achieve a specific computational function. This article addresses the question of how successful and well performing Evolution-in-Materio processors can be designed through the selection of nanomaterials and an evolutionary algorithm for a target application. A physical model of a nanomaterial network is developed which allows for both randomness, and the possibility of Ohmic and non-Ohmic conduction, that are characteristic of such materials. These differing networks are then exploited by differential evolution, which optimises several configuration parameters (e.g., configuration voltages, weights, etc.), to solve different classification problems. We show that ideal nanomaterial choice depends upon problem complexity, with more complex problems being favoured by complex voltage dependence of conductivity and vice versa. Furthermore, we highlight how intrinsic nanomaterial electrical properties can be exploited by differing configuration parameters, clarifying the role and limitations of these techniques. These findings provide guidance for the rational design of nanomaterials and algorithms for future Evolution-in-Materio processors.
期刊介绍:
Evolutionary Computation is a leading journal in its field. It provides an international forum for facilitating and enhancing the exchange of information among researchers involved in both the theoretical and practical aspects of computational systems drawing their inspiration from nature, with particular emphasis on evolutionary models of computation such as genetic algorithms, evolutionary strategies, classifier systems, evolutionary programming, and genetic programming. It welcomes articles from related fields such as swarm intelligence (e.g. Ant Colony Optimization and Particle Swarm Optimization), and other nature-inspired computation paradigms (e.g. Artificial Immune Systems). As well as publishing articles describing theoretical and/or experimental work, the journal also welcomes application-focused papers describing breakthrough results in an application domain or methodological papers where the specificities of the real-world problem led to significant algorithmic improvements that could possibly be generalized to other areas.