A deep learning framework for analyzing cloud characteristics of aggregated convection using cloud-resolving model simulations

IF 2 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Atmospheric Science Letters Pub Date : 2023-01-02 DOI:10.1002/asl.1150
Yi-Chang Chen, Chien-Ming Wu, Wei-Ting Chen
{"title":"A deep learning framework for analyzing cloud characteristics of aggregated convection using cloud-resolving model simulations","authors":"Yi-Chang Chen,&nbsp;Chien-Ming Wu,&nbsp;Wei-Ting Chen","doi":"10.1002/asl.1150","DOIUrl":null,"url":null,"abstract":"<p>This study introduces a framework to extract the high-dimensional nonlinear relationships among state variables for aggregated convection. The prototype of such a framework is developed that applies the convolutional neural network models (CNN models) to retrieve the cloud characteristics from cloud-resolving model (CRM) simulations. CNN model prediction factors are hidden in the high dimensional weighted parameters in each neural network layer. Therefore, we can dig out relevant physics processes by iterating the CNN models' training process and eliminating the features with the physics explanation we can provide at a given stage. Within a few iterations, explainable nonlinear relationships among variables can be provided. We identified that the averaged cloud water path (CWP), the maximum value of CWP in each cloud, and the cloud coverage rate are essential for identifying aggregation. Furthermore, by analyzing the encoded channels of the CNN model, we found a strong relationship between aggregation, cloud peripherals, and fractal dimensions. The results suggest that the important nonlinear cloud characteristics for identifying the aggregation can be captured with the proper adjustment and limitation of the input data to the CNN models. Our framework provides a possibility that we can explore the high dimensional relationship between the physics process with the assistance of the CNN model.</p>","PeriodicalId":50734,"journal":{"name":"Atmospheric Science Letters","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/asl.1150","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Science Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asl.1150","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduces a framework to extract the high-dimensional nonlinear relationships among state variables for aggregated convection. The prototype of such a framework is developed that applies the convolutional neural network models (CNN models) to retrieve the cloud characteristics from cloud-resolving model (CRM) simulations. CNN model prediction factors are hidden in the high dimensional weighted parameters in each neural network layer. Therefore, we can dig out relevant physics processes by iterating the CNN models' training process and eliminating the features with the physics explanation we can provide at a given stage. Within a few iterations, explainable nonlinear relationships among variables can be provided. We identified that the averaged cloud water path (CWP), the maximum value of CWP in each cloud, and the cloud coverage rate are essential for identifying aggregation. Furthermore, by analyzing the encoded channels of the CNN model, we found a strong relationship between aggregation, cloud peripherals, and fractal dimensions. The results suggest that the important nonlinear cloud characteristics for identifying the aggregation can be captured with the proper adjustment and limitation of the input data to the CNN models. Our framework provides a possibility that we can explore the high dimensional relationship between the physics process with the assistance of the CNN model.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用云解析模型模拟分析聚集对流云特征的深度学习框架
本研究引入了一个框架来提取聚集对流状态变量之间的高维非线性关系。开发了这样一个框架的原型,该框架应用卷积神经网络模型(CNN模型)从云解析模型(CRM)模拟中检索云特征。CNN模型预测因子隐藏在每个神经网络层的高维加权参数中。因此,我们可以通过迭代CNN模型的训练过程,并用我们在给定阶段可以提供的物理解释来消除特征,从而挖掘出相关的物理过程。在几次迭代中,可以提供变量之间可解释的非线性关系。我们发现,平均云水路径(CWP)、每个云中CWP的最大值和云覆盖率对于识别聚集至关重要。此外,通过分析CNN模型的编码通道,我们发现聚集、云外围和分形维数之间存在很强的关系。结果表明,只要对CNN模型的输入数据进行适当的调整和限制,就可以捕捉到用于识别聚集的重要非线性云特征。我们的框架提供了一种可能性,即我们可以在CNN模型的帮助下探索物理过程之间的高维关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Atmospheric Science Letters
Atmospheric Science Letters METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
4.90
自引率
3.30%
发文量
73
审稿时长
>12 weeks
期刊介绍: Atmospheric Science Letters (ASL) is a wholly Open Access electronic journal. Its aim is to provide a fully peer reviewed publication route for new shorter contributions in the field of atmospheric and closely related sciences. Through its ability to publish shorter contributions more rapidly than conventional journals, ASL offers a framework that promotes new understanding and creates scientific debate - providing a platform for discussing scientific issues and techniques. We encourage the presentation of multi-disciplinary work and contributions that utilise ideas and techniques from parallel areas. We particularly welcome contributions that maximise the visualisation capabilities offered by a purely on-line journal. ASL welcomes papers in the fields of: Dynamical meteorology; Ocean-atmosphere systems; Climate change, variability and impacts; New or improved observations from instrumentation; Hydrometeorology; Numerical weather prediction; Data assimilation and ensemble forecasting; Physical processes of the atmosphere; Land surface-atmosphere systems.
期刊最新文献
Issue Information A simple subtropical high‐pressure system index over the South Atlantic Towards replacing precipitation ensemble predictions systems using machine learning Accuracy of daily extreme air temperatures under natural variations in thermometer screen ventilation Changing dynamics of Western European summertime cut‐off lows: A case study of the July 2021 flood event
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1