Investigating the writing performance of educationally at-risk examinees using technology

IF 1 Q2 SOCIAL SCIENCES, INTERDISCIPLINARY International Journal of Testing Pub Date : 2022-10-02 DOI:10.1080/15305058.2022.2050734
Mo Zhang, S. Sinharay
{"title":"Investigating the writing performance of educationally at-risk examinees using technology","authors":"Mo Zhang, S. Sinharay","doi":"10.1080/15305058.2022.2050734","DOIUrl":null,"url":null,"abstract":"Abstract This article demonstrates how recent advances in technology allow fine-grained analyses of candidate-produced essays, thus providing a deeper insight on writing performance. We examined how essay features, automatically extracted using natural language processing and keystroke logging techniques, can predict various performance measures using data from a large-scale and high-stakes assessment for awarding high-school equivalency diploma. The features that are the most predictive of writing proficiency and broader academic success were identified and interpreted. The suggested methodology promises to be practically useful because it has the potential to point to specific writing skills that are important for improving essay writing and academic performance for educationally at-risk adult populations like the one considered in this article.","PeriodicalId":46615,"journal":{"name":"International Journal of Testing","volume":"22 1","pages":"312 - 347"},"PeriodicalIF":1.0000,"publicationDate":"2022-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Testing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15305058.2022.2050734","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SOCIAL SCIENCES, INTERDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract This article demonstrates how recent advances in technology allow fine-grained analyses of candidate-produced essays, thus providing a deeper insight on writing performance. We examined how essay features, automatically extracted using natural language processing and keystroke logging techniques, can predict various performance measures using data from a large-scale and high-stakes assessment for awarding high-school equivalency diploma. The features that are the most predictive of writing proficiency and broader academic success were identified and interpreted. The suggested methodology promises to be practically useful because it has the potential to point to specific writing skills that are important for improving essay writing and academic performance for educationally at-risk adult populations like the one considered in this article.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用技术调查受教育风险考生的写作表现
本文展示了最近的技术进步如何允许对候选人产生的文章进行细粒度分析,从而提供了对写作表现的更深入的了解。我们研究了使用自然语言处理和击键记录技术自动提取的论文特征如何使用来自授予高中同等学历的大规模高风险评估的数据来预测各种绩效指标。对写作能力和更广泛的学术成就最具预测性的特征进行了识别和解释。建议的方法有望在实践中发挥作用,因为它有可能指出特定的写作技巧,这些技巧对于提高论文写作和学习成绩非常重要,对于像本文中所考虑的那样有教育风险的成年人来说。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Testing
International Journal of Testing SOCIAL SCIENCES, INTERDISCIPLINARY-
CiteScore
3.60
自引率
11.80%
发文量
13
期刊最新文献
Combining Mokken Scale Analysis with and rasch measurement theory to explore differences in measurement quality between subgroups Examining the construct validity of the MIDUS version of the Multidimensional Personality Questionnaire (MPQ) Beyond group comparisons: Accounting for intersectional sources of bias in international survey measures Can the dark core of personality be measured briefly, multidimensionally, and invariantly? The D25 measure Investigating the acquiescent responding impact in empathy measures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1