Haifaa Alrihieli;Alastair M Rucklidge;Priya Subramanian
{"title":"Spatial localization beyond steady states in the neighbourhood of the Takens–Bogdanov bifurcation","authors":"Haifaa Alrihieli;Alastair M Rucklidge;Priya Subramanian","doi":"10.1093/imamat/hxab030","DOIUrl":null,"url":null,"abstract":"Double-zero eigenvalues at a Takens–Bogdanov (TB) bifurcation occur in many physical systems such as double-diffusive convection, binary convection and magnetoconvection. Analysis of the associated normal form, in 1D with periodic boundary condition, shows the existence of steady patterns, standing waves, modulated waves (MW) and travelling waves, and describes the transitions and bifurcations between these states. Values of coefficients of the terms in the normal form classify all possible different bifurcation scenarios in the neighbourhood of the TB bifurcation (Dangelmayr, G. & Knobloch, E. (1987) The Takens–Bogdanov bifurcation with O(2)-symmetry. Phil. Trans. R. Soc. Lond. A, 322, 243-279). In this work we develop a new and simple pattern-forming partial differential equation (PDE) model, based on the Swift–Hohenberg equation, adapted to have the TB normal form at onset. This model allows us to explore the dynamics in a wide range of bifurcation scenarios, including in domains much wider than the lengthscale of the pattern. We identify two bifurcation scenarios in which coexistence between different types of solutions is indicated from the analysis of the normal form equation. In these scenarios, we look for spatially localized solutions by examining pattern formation in wide domains. We are able to recover two types of localized states, that of a localized steady state (LSS) in the background of the trivial state (TS) and that of a spatially localized travelling wave (LTW) in the background of the TS, which have previously been observed in other systems. Additionally, we identify two new types of spatially localized states: that of a LSS in a MW background and that of a LTW in a steady state (SS) background. The PDE model is easy to solve numerically in large domains and so will allow further investigation of pattern formation with a TB bifurcation in one or more dimensions and the exploration of a range of background and foreground pattern combinations beyond SSs.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://ieeexplore.ieee.org/document/9619531/","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
Double-zero eigenvalues at a Takens–Bogdanov (TB) bifurcation occur in many physical systems such as double-diffusive convection, binary convection and magnetoconvection. Analysis of the associated normal form, in 1D with periodic boundary condition, shows the existence of steady patterns, standing waves, modulated waves (MW) and travelling waves, and describes the transitions and bifurcations between these states. Values of coefficients of the terms in the normal form classify all possible different bifurcation scenarios in the neighbourhood of the TB bifurcation (Dangelmayr, G. & Knobloch, E. (1987) The Takens–Bogdanov bifurcation with O(2)-symmetry. Phil. Trans. R. Soc. Lond. A, 322, 243-279). In this work we develop a new and simple pattern-forming partial differential equation (PDE) model, based on the Swift–Hohenberg equation, adapted to have the TB normal form at onset. This model allows us to explore the dynamics in a wide range of bifurcation scenarios, including in domains much wider than the lengthscale of the pattern. We identify two bifurcation scenarios in which coexistence between different types of solutions is indicated from the analysis of the normal form equation. In these scenarios, we look for spatially localized solutions by examining pattern formation in wide domains. We are able to recover two types of localized states, that of a localized steady state (LSS) in the background of the trivial state (TS) and that of a spatially localized travelling wave (LTW) in the background of the TS, which have previously been observed in other systems. Additionally, we identify two new types of spatially localized states: that of a LSS in a MW background and that of a LTW in a steady state (SS) background. The PDE model is easy to solve numerically in large domains and so will allow further investigation of pattern formation with a TB bifurcation in one or more dimensions and the exploration of a range of background and foreground pattern combinations beyond SSs.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.