{"title":"Finite-time reliable nonfragile control for fractionalorder nonlinear systems with asymmetrical saturation and structured uncertainties","authors":"L. S. Ramya, R. Sakthivel, Chao Wang","doi":"10.15388/namc.2022.27.27486","DOIUrl":null,"url":null,"abstract":"This paper investigates the finite-time stabilization problem of fractional-order nonlinear differential systems via an asymmetrically saturated reliable control in the sense of Caputo’s fractional derivative. In particular, an asymmetrical saturation control problem is converted to a symmetrical saturation control problem by using a linear matrix inequality framework criterion to achieve the essential results. Specifically, in this paper, we obtain two sets of sufficient conditions under different scenarios of structured uncertainty, namely, norm-bounded parametric uncertainty and linear fractional transformation uncertainty. The uncertainty considered in this paper is a combination of polytopic form and structured form. With the help of control theories of fractional-order system and linear matrix inequality technique, some sufficient criteria to ensure reliable finite-time stability of fractional-order differential systems by using the indirect Lyapunov approach are derived. As a final point, the derived criteria are numerically validated by means of examples based on financial fractional-order differential system and permanent magnet synchronous motor chaotic fractional-order differential system.","PeriodicalId":49286,"journal":{"name":"Nonlinear Analysis-Modelling and Control","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2022-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Modelling and Control","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.15388/namc.2022.27.27486","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This paper investigates the finite-time stabilization problem of fractional-order nonlinear differential systems via an asymmetrically saturated reliable control in the sense of Caputo’s fractional derivative. In particular, an asymmetrical saturation control problem is converted to a symmetrical saturation control problem by using a linear matrix inequality framework criterion to achieve the essential results. Specifically, in this paper, we obtain two sets of sufficient conditions under different scenarios of structured uncertainty, namely, norm-bounded parametric uncertainty and linear fractional transformation uncertainty. The uncertainty considered in this paper is a combination of polytopic form and structured form. With the help of control theories of fractional-order system and linear matrix inequality technique, some sufficient criteria to ensure reliable finite-time stability of fractional-order differential systems by using the indirect Lyapunov approach are derived. As a final point, the derived criteria are numerically validated by means of examples based on financial fractional-order differential system and permanent magnet synchronous motor chaotic fractional-order differential system.
期刊介绍:
The scope of the journal is to provide a multidisciplinary forum for scientists, researchers and engineers involved in research and design of nonlinear processes and phenomena, including the nonlinear modelling of phenomena of the nature. The journal accepts contributions on nonlinear phenomena and processes in any field of science and technology.
The aims of the journal are: to provide a presentation of theoretical results and applications; to cover research results of multidisciplinary interest; to provide fast publishing of quality papers by extensive work of editors and referees; to provide an early access to the information by presenting the complete papers on Internet.